

What Is Physics?

Pearland ISD

Mathematical concepts

- Physics experiments involve the measurement of a variety of quantities.
- These measurements should be accurate and reproducible.
- The first step in ensuring accuracy and reproducibility is defining the units in which the measurements are made.

The Role of Units in Problem Solving

- Reasoning Strategy: Converting Between Units
- 1. In all calculations, write down the units explicitly.
- 2. Treat all units as algebraic quantities. When identical units are divided, they are eliminated algebraically.
- 3. Use the conversion factors located on the page facing the inside cover. Be guided by the fact that multiplying or dividing an equation by a factor of 1 does not alter the equation.

Dimensional analysis

 <u>Dimensional analysis</u> - is a process used in determining what units would result from a calculation. In order to be correct, a calculation must produce units of the proper dimension.

Converting units The Role of Units in Problem Solving

- To convert units, multiply the quantity you wish to convert by fractions equaling one; that is, fractions with equivalent units in the numerator and denominator.
- For example:
 - convert 20 m/s to km/hour.

$$20\frac{\mathrm{m}}{\mathrm{s}} \times \frac{1\,\mathrm{km}}{1000\,\mathrm{m}} \times \frac{60\,\mathrm{s}}{1\,\mathrm{min}} \times \frac{60\,\mathrm{min}}{1\,\mathrm{hr}} = 72\,\mathrm{km/hr}$$

The Role of Units in Problem Solving

- Express the speed limit of 65 miles/hour in terms of meters/second.
- Use 5280 feet = 1 mile and 3600 seconds = 1 hour and 3.281 feet = 1 meter.

Speed =
$$\left(65 \frac{\text{miles}}{\text{hour}}\right) \left(\frac{5280 \text{ feet}}{\text{mile}}\right) \left(\frac{1 \text{ hour}}{3600 \text{ s}}\right) = 95 \frac{\text{feet}}{\text{second}}$$

Speed = $\left(95 \frac{\text{feet}}{\text{second}}\right) \left(\frac{1 \text{ meter}}{3.281 \text{ feet}}\right) = 29 \frac{\text{meters}}{\text{second}}$

DIMENSIONAL ANALYSIS

The Role of Units in Problem Solving

- [L] = length [M] = mass [T] = time
- Is the following equation dimensionally correct?

$$x = \frac{1}{2}vt^{2}$$

$$\int \left[L \right] = \left[\frac{L}{T} \right] [T]^{2} = [L][T]$$

Is the following equation dimensionally correct?

What is physics?

- Physics is the study of the physical world, that is, the world of matter and energy.
- Physics is everywhere; any problem that deals with temperature, size, motion, position, shape, or color involves physics.

Name	Subjects
	motion and its causes
	heat and temperature
	specific types of repetitive motion
	light
	electricity, magnetism, and light

Name	Subjects	
mechanics	motion and its causes	
	heat and temperature	
	specific types of repetitive motion	
	light	
	electricity, magnetism, and light	

Name	Subjects
mechanics	motion and its causes
thermodynamics	heat and temperature
	specific types of repetitive motion
	light
	electricity, magnetism, and light

Name	Subjects
mechanics	motion and its causes
thermodynamics	heat and temperature
vibrations and waves	specific types of repetitive motion
	light
	electricity, magnetism, and light

Name	Subjects
mechanics	motion and its causes
thermodynamics	heat and temperature
vibrations and waves	specific types of repetitive motion
optics	light
	electricity, magnetism, and light

Name	Subjects
mechanics	motion and its causes
thermodynamics	heat and temperature
vibrations and waves	specific types of repetitive motion
optics	light
electromagnetism	electricity, magnetism, and light

Name	Subjects
relativity	Particles moving at any speed, including very high speed
	Behavior of submicroscopic atomic particles

Name	Subjects
relativity	Particles moving at any speed, including very high speed
quantum mechanics	Behavior of submicroscopic atomic particles

Physics uses the scientific method. –

- Scientific method an organized process used to conduct scientific investigations or experiments.
- There is no one single procedure, but certain processes are usually present.
- This is the only guide to good science practice

Processes in the Scientific Method

- Make observations and collect data, that lead to a question.
- Formulate and objectively test hypothesis by experimentation.
- Interpret results, and revise the hypothesis and experiment if necessary.
- State conclusions, whether or not the data collected supports the hypothesis.
 - The conclusion should be stated in a form that can be evaluated by others.

How Physicists Simplify Reality

 System – a set of items or interactions considered a distinct physical entity for the purpose of study;

 usually, this involves a single object and the items that immediately affect it.

How Physicists Simplify Reality

Model – a replica or description designed to show the structure or workings of an object, system, or concept.

Galileo's Thought Experiment

What does happen: Heavy objects fall as fast as lighter ones.

What does not happen: Heavy objects do *not* fall faster than lighter ones.

The Scientific Method

- Using models can help build hypotheses.
- Hypothesis
 - a possible answer, based on background information available.
 - provides a plan or model for investigation or experimentation.
- Controlled experiment an experiment involving the manipulation of a single variable or factor.

The Scientific Method

- Independent variable (horizontal-axis)- the quantity that is manipulated by the experimenter in an experiment in order to determine its effect on another quantity.
- Dependent variable (vertical-axis) the quantity that is being measured; the experimenter tries to determine how the dependent variable is affected by changes in the independent variable.

III. Measurements in Physics

Dimension

- In physics, dimension refers to the type of quantity being measured.
- For example:
 - Both the <u>height of a building and the distance</u> from here to Dallas have the dimension of <u>length</u>, though they are usually measured in different units.
 - A football player's <u>age in years</u> and the <u>number of</u> <u>seconds he takes to run 40 yards</u> are both measurements of the <u>time</u> dimension.

Measurement in Experiments

SI Base Units of Measurements			
Dimension	Unit	Symbol	
length			
time			
mass			
current	-		
temperature			

Measurement in Experiments

SI Base Units of Measurements			
	unit symbol		
luminous intensity			
amount of a substance			

All other units are called derived units because they are based on combinations of two or more of the SI base units.

Accuracy and Precision

Accuracy – how close a measured value is to the true or accepted value of the quantity being measured
 Precision – the degree of exactness with which a measurement is made and

stated

Practice:

Accurate, Precise, Both or Neither

- The following students measure the density of a piece of lead three times. The density of lead is actually 11.34 g/cm³. Considering all of the results, whose results were accurate? Whose were precise? Were any both accurate and precise? If so, whose?
 - **a.** Rachel: 11.32 g/cm³, 11.35 g/cm³, 11.34 g/cm³
 - **b.** Daniel: 11.43 g/cm³, 11.44 g/cm³, 11.42 g/cm³
 - **c.** Leah: 11.55 g/cm³, 11.34 g/cm³, 11.04 g/cm³

Discovery Mini – Lab: Accuracy and Precision

Now go back to the Accuracy and Precision Mini-lab handout that you completed earlier today and complete your explanations for the ruler you think is better

IV. The language of Physics

Tools to make data easier to understand.

Tables

- Very useful for displaying data precisely.
- The relationship between the quantities may not be clear.
- Graphs
 - Visually display the relationship between two quantities.
 - The <u>precision of the data</u> is limited by the <u>scale of the graph</u>.

Tools to make data easier to understand. - part of this slide is not in your notes ©

Equations

- Mathematically display the relationship between two quantities.
- Can be manipulated using algebra:

$$d = v \times t$$
 (distance = velocity x time)
 $v = \frac{d}{t}$ (velocity = distance / time)

Symbols used in physics equations

- ▲ means "difference" or "change in."
- Σ means "sum" or "total."

Quantity	Symbol	Units	Unit
			Abbrev.
Change in position	$\Delta x \text{ or } \Delta y$	meters	m
Time interval	∆t	seconds	S
Mass	m	kilograms	kg