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Suggested Simulations for Chapter 16

• ActivPhysics

• 10.4–10.7

• PhETs

• Wave Interference

• Wave on a String
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Chapter 16 Superposition and Standing Waves

Chapter Goal: To use the idea of superposition to 

understand the phenomena of interference and standing 

waves.
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Chapter 16 Preview
Looking Ahead: Superposition

• Where the two water waves meet, the motion of the water 

is a sum, a superposition, of the waves. 

• You’ll learn how this interference can be constructive or 

destructive, leading to larger or smaller amplitudes. 

© 2015 Pearson Education, Inc.



Slide 16-6

• The superposition of waves on a string can lead to a wave 

that oscillates in place—a standing wave. 

• You’ll learn the patterns of standing waves on strings and 

standing sound waves in tubes. 

Chapter 16 Preview
Looking Ahead: Standing Waves
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Chapter 16 Preview
Looking Ahead: Speech and Hearing

• Changing the shape of your mouth alters the pattern of  

standing sound waves in your vocal tract. 

• You’ll learn how your vocal tract produces, and your ear 

interprets, different mixes of waves. 
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Chapter 16 Preview
Looking Ahead

© 2015 Pearson Education, Inc.

Text: p. 500
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Chapter 16 Preview
Looking Back: Traveling Waves

• In Chapter 15 you learned the properties of traveling 

waves and relationships among the variables that describe 

them.

• In this chapter, you’ll extend the analysis to understand the 

interference of waves and the properties of standing 

waves.
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Chapter 16 Preview
Stop to Think

A 170 Hz sound wave in air has a wavelength of 2.0 m. The 

frequency is now doubled to 340 Hz. What is the new 

wavelength?

A. 4.0 m

B. 3.0 m

C. 2.0 m

D. 1.0 m
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Reading Question 16.1

When two waves overlap, the displacement of the medium 

is the sum of the displacements of the two individual waves. 

This is the principle of __________.

A. Constructive interference

B. Destructive interference

C. Standing waves

D. Superposition
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Reading Question 16.1
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Reading Question 16.2

A point on a standing wave that is always stationary is a 

_________.

A. Maximum

B. Minimum

C. Node

D. Antinode
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Reading Question 16.2

A point on a standing wave that is always stationary is a 

_________.

A. Maximum

B. Minimum

C. Node

D. Antinode
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Reading Question 16.3

You can decrease the frequency of a standing wave on a 

string by

A. Making the string longer.

B. Using a thicker string.

C. Decreasing the tension. 

D. All of the above
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Reading Question 16.3

You can decrease the frequency of a standing wave on a 

string by
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Reading Question 16.4

We describe sound waves in terms of pressure. Given this, 

for a standing wave in a tube open at each end, the open 

ends of the tube are

A. Nodes.

B. Antinodes.

C. Neither nodes or antinodes.
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Reading Question 16.4
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Reading Question 16.5

The interference of two sound waves of similar amplitude 

but slightly different frequencies produces a loud-soft-loud 

oscillation we call

A. Constructive and destructive interference.

B. The Doppler effect.

C. Beats.

D. Vibrato.

© 2015 Pearson Education, Inc.



Slide 16-20

Reading Question 16.5

The interference of two sound waves of similar amplitude 

but slightly different frequencies produces a loud-soft-loud 

oscillation we call
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B. The Doppler effect.
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The Principle of Superposition

• If two baseballs are thrown across the same point at the 

same time, the balls will hit one another and be deflected.
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The Principle of Superposition

• Waves, however, can pass 

through one another. Both 

observers would hear 

undistorted sound, despite 

the sound waves crossing.
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The Principle of Superposition
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The Principle of Superposition

• To use the principle of superposition, you must know the 

displacement that each wave would cause if it were alone 

in the medium.

• Then you must go through the medium point by point and 

add the displacements due to each wave at that point.
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Constructive and Destructive Interference

• The superposition of two waves is called interference.

• Constructive interference occurs when both waves are 

positive and the total displacement of the medium is larger 

than it would be for either wave separately.
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Constructive and Destructive Interference

• The superposition of two waves is called interference.

• Constructive interference occurs when both waves are 

positive and the total displacement of the medium is larger 

than it would be for either wave separately.
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Constructive and Destructive Interference

• Destructive interference is when the displacement of the 

medium where the waves overlap is less than it would be 

due to either of the waves separately.

• During destructive interference, the energy of the wave is 

in the form of kinetic energy of the medium.
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Constructive and Destructive Interference
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Constructive and Destructive Interference

• Destructive interference is when the displacement of the 

medium where the waves overlap is less than it would be 

due to either of the waves separately.

• During destructive interference, the energy of the wave is 

in the form of kinetic energy of the medium.

© 2015 Pearson Education, Inc.



Slide 16-31

QuickCheck 16.1

Two wave pulses on a string 

approach each other at 

speeds of 1 m/s. How does 

the string look at t = 3 s?

© 2015 Pearson Education, Inc.
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QuickCheck 16.1

Two wave pulses on a string 

approach each other at 

speeds of 1 m/s. How does 

the string look at t = 3 s?
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Two wave pulses on a string 

approach each other at 

speeds of 1 m/s. How does 

the string look at t = 3 s?

QuickCheck 16.2
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Two wave pulses on a string 

approach each other at 

speeds of 1 m/s. How does 

the string look at t = 3 s?

QuickCheck 16.2
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QuickCheck 16.3

Two waves on a string are moving toward each other. A picture 

at t = 0 s appears as follows:

How does the string appear at t = 2 s?

© 2015 Pearson Education, Inc.
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QuickCheck 16.3

Two waves on a string are moving toward each other. A picture 

at t = 0 s appears as follows:

How does the string appear at t = 2 s?
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Standing Waves

• Waves that are “trapped” and cannot travel in either 

direction are called standing waves. 

• Individual points on a string oscillate up and down, but 

the wave itself does not travel.

• It is called a standing wave because the crests and troughs 

“stand in place” as it oscillates.
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Superposition Creates a Standing Wave

• As two sinusoidal waves of equal wavelength and 

amplitude travel in opposite directions along a string, 

superposition will occur when the waves interact. 

© 2015 Pearson Education, Inc.
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Superposition Creates a Standing Wave
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Superposition Creates a Standing Wave
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Superposition Creates a Standing Wave

• The two waves are represented by red and by orange in the 

previous figures. At each point, the net displacement of the 

medium is found by adding the red displacement and the 

orange displacement. The blue wave is the resulting wave 

due to superposition.

© 2015 Pearson Education, Inc.
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Nodes and Antinodes

• In a standing wave pattern, 

there are some points that 

never move. These points 

are called nodes and are 

spaced λ/2 apart.

• Antinodes are halfway 

between the nodes, where 

the particles in the medium 

oscillate with maximum displacement.

© 2015 Pearson Education, Inc.



Slide 16-44

Nodes and Antinodes

• The wavelength of a 

standing wave is twice the 

distance between successive 

nodes or antinodes.

• At the nodes, the 

displacement of the two 

waves cancel one another by 

destructive interference. The 

particles in the medium at a 

node have no motion. 

© 2015 Pearson Education, Inc.
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Nodes and Antinodes

• At the antinodes, the two 

waves have equal magnitude 

and the same sign, so 

constructive interference at 

these points give a 

displacement twice that of 

the individual waves.

• The intensity is maximum 

at points of constructive 

interference and zero at 

points of destructive 

interference.

© 2015 Pearson Education, Inc.
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QuickCheck 16.4

What is the wavelength of this standing wave?

A. 0.25 m

B. 0.5 m

C. 1.0 m

D. 2.0 m

E. Standing waves don’t have a wavelength.

© 2015 Pearson Education, Inc.
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QuickCheck 16.4
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Reflections

• A wave pulse traveling along 

a string attached to a wall 

will be reflected when it 

reaches the wall, or the

boundary.

• All of the wave’s energy is 

reflected; hence the 

amplitude of a wave 

reflected from a boundary 

is unchanged.

• The amplitude does not change, but 

the pulse is inverted.

© 2015 Pearson Education, Inc.
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Reflections

• Waves also reflect from a discontinuity, a point where 

there is a change in the properties of the medium. 

• At a discontinuity, some of the wave’s energy is 

transmitted forward and some is reflected. 

© 2015 Pearson Education, Inc.
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Reflections

• When the string on the right is more massive, it acts like a 

boundary so the reflected pulse is inverted.

© 2015 Pearson Education, Inc.
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Try It Yourself: Through the Glass Darkly

A piece of window glass is a 

discontinuity to a light wave, so 

it both transmits and reflects 

light. To verify this, look at the 

windows in a brightly lit room 

at night. The small percentage 

of the interior light that reflects from windows is more 

intense than the light coming in from outside, so reflection 

dominates and the windows show a mirror-like reflection of 

the room. Now turn out the lights. With no more reflected 

interior light you will be able to see the transmitted light 

from outside.

© 2015 Pearson Education, Inc.
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Creating a Standing Wave

• Standing waves can be 

created by a string with 

two boundaries where 

reflections occur. A 

disturbance in the middle 

of the string causes waves 

to travel outward in both 

directions.

• The reflections at the ends 

of the string cause two 

waves of equal amplitude and wavelength to travel in 

opposite directions along the string. 

© 2015 Pearson Education, Inc.
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Creating a Standing Wave

• Two conditions must be 

met in order to create 

standing waves on the 

string:

• Because the string is 

fixed at the ends, the 

displacements at x = 0 

and x = L must be zero 

at all times. Stated 

another way, we require 

nodes at both ends of the string.

• We know that standing waves have a spacing of λ/2 between 

nodes. This means that the nodes must be equally spaced.

© 2015 Pearson Education, Inc.
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Creating a Standing Wave

• There are three possible 

standing-wave modes of a 

string.

• The mode number m helps 

quantify the number of 

possible waves in a standing 

wave. A mode number m  1

indicates only one wave, m  2 

indicates 2 waves, etc.

© 2015 Pearson Education, Inc.
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Creating a Standing Wave

• Different modes have different 

wavelengths.

• For any mode m the wavelength is 

given by the equation

• A standing wave can exist on the 

string only if its wavelength is 

one of the values given by this 

equation.

© 2015 Pearson Education, Inc.
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Creating a Standing Wave

• The oscillation frequency corresponding to wavelength λm

is

• The mode number m is equal to the number of 

antinodes of the standing wave.

© 2015 Pearson Education, Inc.
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Creating a Standing Wave

• The standing-wave modes are frequencies at which the 

wave “wants” to oscillate. They can be called resonant 

modes or resonances. 

© 2015 Pearson Education, Inc.
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QuickCheck 16.5

What is the mode number of this standing wave?

A. 4

B. 5

C. 6

D. Can’t say without knowing what kind of wave it is

© 2015 Pearson Education, Inc.
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QuickCheck 16.5
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The Fundamental and Higher Harmonics

• The first mode of the standing-wave modes has the 

frequency

• This frequency is the fundamental frequency of the 

string.

© 2015 Pearson Education, Inc.
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The Fundamental and Higher Harmonics

• The frequency in terms of the fundamental frequency is

fm = mf1 m = 1, 2, 3, 4, . . .

• The allowed standing-wave frequencies are all integer 

multiples of the fundamental frequency.

• The sequence of possible frequencies is called a set of 

harmonics. 

• Frequencies above the fundamental frequency are referred 

to as higher harmonics.

© 2015 Pearson Education, Inc.
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Example 16.2 Identifying harmonics on a string

A 2.50-m-long string vibrates 

as a 100 Hz standing wave 

with nodes at 1.00 m and 

1.50 m from one end of the 

string and at no points in 

between these two. 

Which harmonic is this? 

What is the string’s 

fundamental frequency? And 

what is the speed of the 

traveling waves on the string?

© 2015 Pearson Education, Inc.
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Example 16.2 Identifying harmonics on a string 
(cont.)

PREPARE We begin with the 

visual overview in 

FIGURE 16.15, in which we 

sketch this particular standing 

wave and note the known and 

unknown quantities. We set 

up an x-axis with one end of 

the string at x  0 m and the 

other end at x  2.50 m. The ends of the string are nodes, 

and there are nodes at  1.00 m and 1.50 m as well, with no 

nodes in between.

© 2015 Pearson Education, Inc.
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Example 16.2 Identifying harmonics on a string 
(cont.)

We know that standing-wave 

nodes are equally spaced, so 

there must be other nodes on 

the string, as shown in Figure 

16.15a. Figure 16.15b is a 

sketch of the standing-wave 

mode with this node 

structure.

© 2015 Pearson Education, Inc.
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Example 16.2 Identifying harmonics on a string 
(cont.)

SOLVE We count the number 

of antinodes of the standing 

wave to deduce the mode 

number; this is mode m = 5. 

This is the fifth harmonic. 

The frequencies of the 

harmonics are given by fm = 

mf1, so the fundamental 

frequency is

© 2015 Pearson Education, Inc.
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Example 16.2 Identifying harmonics on a string 
(cont.)

The wavelength of the 

fundamental mode is 

λ1 = 2L = 2(2.50 m) = 5.00 m, 

so we can find the wave speed 

using the fundamental 

relationship for sinusoidal 

waves:

v = λ1f 1 = (20 Hz) (5.00 m) = 100 m/s

© 2015 Pearson Education, Inc.
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Example 16.2 Identifying harmonics on a string 
(cont.)

ASSESS We can calculate the 

speed of the wave using any 

possible mode, which gives us a 

way to check our work. The 

distance between successive 

nodes is λ/2. Figure 16.15 shows 

that  the nodes are spaced by 

0.50 m, so the wavelength of the 

m = 5 mode is 1.00 m. The frequency of this mode is 100 Hz, so 

we calculate

v = λ5 f5 = (100 Hz) (1.00 m) = 100 m/s

This is the same speed that we calculated earlier, which gives us 

confidence in our results.
© 2015 Pearson Education, Inc.
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Example Problem

A particular species of spider spins a web with silk threads 

of density 1300 kg/m3 and diameter 3.0 μm. A passing insect 

brushes a 12-cm-long strand of the web, which has a tension 

of 1.0 mN, and excites the lowest frequency standing wave. 

With what frequency will the strand vibrate?

© 2015 Pearson Education, Inc.
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Stringed Musical Instruments

• The fundamental frequency can be written in terms of the 

tension in the string and the linear density:

• When you pluck a bow or string of an instrument, initially 

you excite a wide range of frequencies; however the 

resonance sees to it that the only frequencies to persist are 

those of the possible standing waves.

• On many instruments, the length and tension of the strings 

are nearly the same; the strings have different frequencies 

because they differ in linear density.

© 2015 Pearson Education, Inc.
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QuickCheck 16.6

A standing wave on a string vibrates as shown. Suppose the 

string tension is reduced to 1/4 its original value while the 

frequency and length are kept unchanged. 

Which standing wave pattern is produced?

© 2015 Pearson Education, Inc.
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QuickCheck 16.6

A standing wave on a string vibrates as shown. Suppose the 

string tension is reduced to 1/4 its original value while the 

frequency and length are kept unchanged. 

Which standing wave pattern is produced?

© 2015 Pearson Education, Inc.

The frequency is                  . 

Quartering the tension reduces v by one half. 

Thus m must double to keep the frequency constant.

fm  m v
2L

C.



Slide 16-73

QuickCheck 16.7

Which of the following changes will increase the frequency 

of the lowest-frequency standing sound wave on a stretched 

string? Choose all that apply.

A. Replacing the string with a thicker string

B. Increasing the tension in the string

C. Plucking the string harder

D. Doubling the length of the string

© 2015 Pearson Education, Inc.
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QuickCheck 16.7

Which of the following changes will increase the frequency 

of the lowest-frequency standing sound wave on a stretched 

string? Choose all that apply.

A. Replacing the string with a thicker string

B. Increasing the tension in the string

C. Plucking the string harder

D. Doubling the length of the string
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Example 16.4 Setting the tension in a guitar 
string

The fifth string on a guitar plays the musical note A, at a 

frequency of 110 Hz. On a typical guitar, this string is 

stretched between two fixed points 0.640 m apart, and this 

length of string has a mass of 2.86 g. What is the tension in 

the string?

PREPARE Strings sound at their fundamental frequency, so  

110 Hz is f1.

© 2015 Pearson Education, Inc.
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Example 16.4 Setting the tension in a guitar 
string (cont.)

SOLVE The linear density of the string is

We can rearrange Equation 16.5 for the fundamental 

frequency to solve for the tension in terms of the other 

variables:

© 2015 Pearson Education, Inc.
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Example 16.4 Setting the tension in a guitar 
string (cont.)

ASSESS If you have ever strummed a guitar, you know that 

the tension is quite large, so this result seems reasonable. If 

each of the guitar’s six strings has approximately the same 

tension, the total force on the neck of the guitar is a bit more 

than 500 N.

© 2015 Pearson Education, Inc.
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Two strings with linear densities of 5.0 g/m are stretched 

over pulleys, adjusted to have vibrating lengths of 50 cm, 

and attached to hanging blocks. The block attached to String 

1 has a mass of 20 kg and the block attached to String 2 has 

mass M. When driven at the same frequency, the two strings 

support the standing waves shown. 

A. What is the driving frequency?

B. What is the mass of the block 

suspended from String 2? 

Example Problem

© 2015 Pearson Education, Inc.
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Standing Electromagnetic Waves

• A laser establishes standing light waves between two 

parallel mirrors that reflect light back and forth.

• The mirrors are the boundaries and therefore the light 

wave must have a node at the surface of each mirror. 

© 2015 Pearson Education, Inc.
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Example 16.5 Finding the mode number for a 
laser

A helium-neon laser emits light of wavelength λ = 633 nm. 

A typical cavity for such a laser is 15.0 cm long. What is the 

mode number of the standing wave in this cavity?

PREPARE Because a light wave is a transverse wave, 

Equation 16.1 for λm applies to a laser as well as a vibrating 

string.

© 2015 Pearson Education, Inc.
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Example 16.5 Finding the mode number for a 
laser (cont.)

SOLVE The standing light wave in a laser cavity has a mode 

number m that is roughly

ASSESS The wavelength of light is very short, so we’d 

expect the nodes to be closely spaced. A high mode number 

seems reasonable.

© 2015 Pearson Education, Inc.
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Standing Sound Waves

• Sound waves are longitudinal 

pressure waves. The air 

molecules oscillate, creating 

compressions (regions of 

higher pressure) and 

rarefactions (regions of 

lower pressure).

© 2015 Pearson Education, Inc.
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Standing Sound Waves

• Sound waves traveling in a 

tube eventually reach the 

end where they encounter 

the atmospheric pressure 

of the surrounding 

environment: a discontinuity.

• Part of the wave’s energy is 

transmitted out into the 

environment, allowing you 

to hear the sound, and part is 

reflected back into the tube.

© 2015 Pearson Education, Inc.
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Standing Sound Waves

• Air molecules “slosh” back 

and forth, alternately pushing 

together (compression) and 

pulling apart (rarefaction).

© 2015 Pearson Education, Inc.
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Standing Sound Waves

• A column of air open 

at both ends is an 

open-open tube.

• The antinodes of a 

standing sound wave 

are where the pressure 

has the largest 

variation: maximum 

compressions and 

rarefactions.

© 2015 Pearson Education, Inc.
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Standing Sound Waves

• Air molecules in tubes that are closed at one or both ends 

will rush toward the wall, creating a compression, and then 

rush away leaving a rarefaction. 

• Thus a closed end of an air column is an antinode of 

pressure.

© 2015 Pearson Education, Inc.
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Standing Sound Waves

© 2015 Pearson Education, Inc.
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Standing Sound Waves

© 2015 Pearson Education, Inc.
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Standing Sound Waves

© 2015 Pearson Education, Inc.
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QuickCheck 16.8

An open-open tube of air has length 

L. Which graph shows the m = 3 

standing wave in this tube?

© 2015 Pearson Education, Inc.
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QuickCheck 16.8

An open-open tube of air has length 

L. Which graph shows the m = 3 

standing wave in this tube?

© 2015 Pearson Education, Inc.
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QuickCheck 16.9

An open-closed tube of air of length L

has the closed end on the right. Which 

graph shows the m = 3 standing wave 

in this tube?

© 2015 Pearson Education, Inc.
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QuickCheck 16.9

An open-closed tube of air of length L

has the closed end on the right. Which 

graph shows the m = 3 standing wave 

in this tube?

© 2015 Pearson Education, Inc.
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Standing Sound Waves

• The wavelengths and frequencies of an open-open tube 

and a closed-closed tube are

• The fundamental frequency of an open-closed tube is 

half that of an open-open or a closed-closed tube of the 

same length.

[Insert Equation 16.7 p. 511]

© 2015 Pearson Education, Inc.



Slide 16-96

QuickCheck 16.10

The following tubes all support sound waves at their 

fundamental frequency. Which tube has the lowest 

fundamental frequency?

© 2015 Pearson Education, Inc.
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QuickCheck 16.10

The following tubes all support sound waves at their 

fundamental frequency. Which tube has the lowest 

fundamental frequency?

© 2015 Pearson Education, Inc.
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QuickCheck 16.11

Which of the following changes will increase the frequency 

of the lowest-frequency standing sound wave in an open-

open tube? Choose all that apply.

A. Closing one end of the tube

B. Replacing the air in the tube with helium

C. Reducing the length of the tube

D. Increasing the temperature of the air in the tube

© 2015 Pearson Education, Inc.
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QuickCheck 16.11

Which of the following changes will increase the frequency 

of the lowest-frequency standing sound wave in an open-

open tube? Choose all that apply.

A. Closing one end of the tube

B. Replacing the air in the tube with helium

C. Reducing the length of the tube

D. Increasing the temperature of the air in the tube
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QuickCheck 16.12

At room temperature, the fundamental frequency of an 

open-open tube is 500 Hz. If taken outside on a cold winter 

day, the fundamental frequency will be

A. Less than 500 Hz

B. 500 Hz

C. More than 500 Hz

© 2015 Pearson Education, Inc.
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QuickCheck 16.12

At room temperature, the fundamental frequency of an 

open-open tube is 500 Hz. If taken outside on a cold winter 

day, the fundamental frequency will be

A. Less than 500 Hz

B. 500 Hz

C. More than 500 Hz
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Standing Sound Waves

© 2015 Pearson Education, Inc.

Text: p. 511
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Standing Sound Waves

© 2015 Pearson Education, Inc.

Text: p. 512



Slide 16-104

Standing Sound Waves

• The curve of equal 

perceived loudness shows 

the intensity level required 

for different frequencies to 

give the impression of equal 

loudness. 

• The two dips on the curve 

are resonances in the ear 

canal where pitches that should seem quieter produce the 

same perceived loudness.
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Wind Instruments

• Wind instruments use holes to 

change the effective length of 

the tube. The first hole open 

becomes a node because the 

tube is open to atmosphere at 

that point.

• Instruments with buzzers at the end or that use vibrations 

of the musician’s lips generate a continuous range of 

frequencies. The ones that match the resonances produce 

the musical notes.
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Example 16.8 The importance of warming up

Wind instruments have an adjustable joint to change the 

tube length. Players know that they may need to adjust this 

joint to stay in tune—that is, to stay at the correct frequency. 

To see why, suppose a “cold” flute plays the note A at 440 

Hz when the air temperature is 20°C.

a. How long is the tube? At 20°C, the speed of sound in air 

is 343 m/s.
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Example 16.8 The importance of warming up

b. As the player blows air through the flute, the air inside 

the  instrument warms up. Once the air temperature 

inside the flute has risen to 32°C, increasing the speed of 

sound to 350 m/s, what is the frequency?

c. At the higher temperature, how must the length of the 

tube be changed to bring the frequency back to 440 Hz?
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Example 16.8 The importance of warming up 
(cont.)

SOLVE A flute is an open-open tube with fundamental 

frequency f1 = v/2L.

a. At 20°C, the length corresponding to 440 Hz is
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Example 16.8 The importance of warming up 
(cont.)

b. As the speed of sound increases, the frequency changes 

to

c. To bring the flute back into tune, the length must be 

increased to give a frequency of 440 Hz with a speed of 

350 m/s. The new length is

Thus the flute must be increased in length by 8 mm.
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Example 16.8 The importance of warming up 
(cont.)

ASSESS A small change in the absolute temperature produces 

a correspondingly small change in the speed of sound. We 

expect that this will require a small change in length, so our 

answer makes sense.
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The Frequency Spectrum

• Most sounds are a mix, or 

superposition, of different 

frequencies.

• The frequency spectrum of 

a sound is a bar chart showing 

the relative intensities of 

different frequencies.

• Your brain interprets the fundamental frequency as the 

pitch and uses the higher harmonics to determine the tone 

quality, or timbre.
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The Frequency Spectrum

• The tone quality is what 

makes a note on the trumpet 

sound differently from the 

same note (frequency) played 

on a guitar. The frequency 

spectrum is different.

• The higher harmonics don’t change the period of the 

sound wave; they change only its shape.
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Vowels and Formants

• Speech begins with the 

vibration of vocal cords, 

stretched tissue in your 

throat.

• Your vocal cords produce 

a mix of different 

frequencies as they 

vibrate—the fundamental frequency and a mixture of 

higher harmonics.

• This creates the pitch of your voice and can be changed by 

changing the tension in your vocal cords.
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Vowels and Formants

• Sound then passes through 

your vocal tract—a series of 

cavities including the throat, 

mouth, and nose—that act 

like tubes.

• The standing-wave 

resonances in the vocal tract 

are called formants.
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Vowels and Formants

• You change the shape and 

frequency of the formants, 

and thus the sounds you 

make, by changing your 

mouth opening and the 

shape and position of your 

tongue.
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Interference Along a Line

• Two loudspeakers are 

spaced exactly one 

wavelength apart. 

Assuming the sound 

waves are identical, the 

waves will travel on top of 

each other.

• Superposition says that for 

every point along the line, 

the net sound pressure will 

be the sum of the 

pressures.
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Interference Along a Line

• Because the loudspeakers 

are spaced one wavelength 

apart, the crests and 

troughs are aligned, and 

therefore are in phase.

• Waves that are in phase 

will have constructive 

interference.
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Interference Along a Line

• If d1 and d2 are the 

distances from the 

loudspeakers to the 

observer, their difference is 

called the path-length 

difference.

• Two waves will be in 

phase and will produce 

constructive interference 

any time their path-length 

difference is a whole 

number of wavelengths.
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QuickCheck 16.13

Two speakers are emitting identical sound waves with a 

wavelength of 4.0 m. The speakers are 8.0 m apart and directed 

toward each other, as in the following diagram.

At each of the noted points in the previous diagram, the 

interference is

A. Constructive. 

B. Destructive. 

C. Something in between.
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QuickCheck 16.13

Two speakers are emitting identical sound waves with a 

wavelength of 4.0 m. The speakers are 8.0 m apart and directed 

toward each other, as in the following diagram.

At each of the noted points in the previous diagram, the 

interference is

A. Constructive. 

B. Destructive. 

C. Something in between.
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Interference Along a Line

• When the speakers are 

separated by half a 

wavelength, the waves are 

out of phase.

• The sum of the two waves 

is zero at every point; this 

is destructive interference.

© 2015 Pearson Education, Inc.



Slide 16-124

Interference Along a Line

• Two wavelengths will 

be out of phase and will 

produce destructive 

interference if their 

path-length difference 

is a whole number of 

wavelength plus half a 

wavelength.
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Interference Along a Line

• For two identical sources of waves, constructive 

interference occurs when the path-length difference is

• Destructive interference occurs when the path-length 

difference is
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QuickCheck 16.14

Two loudspeakers emit sound waves 

with the same wavelength and the 

same amplitude. The waves are shown 

displaced, for clarity, but assume that 

both are traveling along the same axis. At the point where the 

dot is,

A. The interference is constructive.

B. The interference is destructive.

C. The interference is somewhere between constructive and 

destructive.

D. There’s not enough information to tell about the interference.

© 2015 Pearson Education, Inc.



Slide 16-127

QuickCheck 16.14

Two loudspeakers emit sound waves 

with the same wavelength and the 

same amplitude. The waves are shown 

displaced, for clarity, but assume that 

both are traveling along the same axis. At the point where the 

dot is,

A. The interference is constructive.

B. The interference is destructive.

C. The interference is somewhere between constructive and 

destructive.

D. There’s not enough information to tell about the interference.
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QuickCheck 16.15

Two loudspeakers emit sound waves 

with the same wavelength and the same 

amplitude. Which of the following 

would cause there to be destructive interference at the 

position of the dot?

A. Move speaker 2 forward (right) 1.0 m

B. Move speaker 2 forward (right) 0.5 m

C. Move speaker 2 backward (left) 0.5 m

D. Move speaker 2 backward (left) 1.0 m

E. Nothing. Destructive interference is not possible in this 

situation.
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QuickCheck 16.15

Two loudspeakers emit sound waves 

with the same wavelength and the same 

amplitude. Which of the following 

would cause there to be destructive interference at the 

position of the dot?

A. Move speaker 2 forward (right) 1.0 m

B. Move speaker 2 forward (right) 0.5 m

C. Move speaker 2 backward (left) 0.5 m

D. Move speaker 2 backward (left) 1.0 m

E. Nothing. Destructive interference is not possible in this 

situation.
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Example 16.10 Interference of sound from two 
speakers

Susan stands directly in front of 

two speakers that are in line with 

each other. The farther speaker is 

6.0 m from her; the closer speaker 

is 5.0 m away. The speakers are connected to the same 

680 Hz sound source, and Susan hears the sound loud and 

clear. The frequency of the source is slowly increased until, 

at some point, Susan can no longer hear it. What is the 

frequency when this cancellation occurs? Assume that the 

speed of sound in air is 340 m/s.
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Example 16.10 Interference of sound from two 
speakers (cont.)

PREPARE We’ll start with a visual 

overview of the situation, as shown 

in FIGURE 16.27. The sound 

waves from the two speakers 

overlap at Susan’s position. The path-length difference—the 

extra distance traveled by the wave from speaker 1—is just 

the difference in the distances from the speakers to Susan’s 

position. In this case,

∆d  d2  d1  6.0 m 5.0 m  1.0 m
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Example 16.10 Interference of sound from two 
speakers (cont.)

At 680 Hz, this path-length difference gives constructive 

interference. When the frequency is increased by some 

amount, destructive interference results and Susan can no 

longer hear the sound.
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Example 16.10 Interference of sound from two 
speakers (cont.)

SOLVE The path-length difference 

and the sound wavelength together 

determine whether the interference 

at Susan’s position is constructive 

or destructive. Initially, with a 680 Hz 

tone and a 340 m/s sound speed, the wavelength is
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Example 16.10 Interference of sound from two 
speakers (cont.)

The ratio of the path-length 

difference to the wavelength is

The path-length difference matches the constructive-

interference condition ∆d  mλ with m  2. We expect 

constructive interference, which is what we get—the sound 

is loud.
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Example 16.10 Interference of sound from two 
speakers (cont.)

As the frequency is increased, the 

wavelength decreases and the ratio 

∆d/λ increases. The ratio starts at 

2.0. The first time destructive 

interference occurs is when the ratio reaches 2½, which 

matches the destructive-interference condition ∆d  (m + )λ

with m  2. So destructive interference first occurs when the 

wavelength is decreased to

This corresponds to a frequency of
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Example 16.10 Interference of sound from two 
speakers (cont.)

ASSESS 850 Hz is an increase of 170 Hz from the original  

680 Hz, an increase of one-fourth of the original frequency. 

This makes sense: Originally, 2 cycles of the wave “fit” in 

the 1.0 m path-length difference; now, 2.5 cycles “fit,” an 

increase of one-fourth of the original.
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Interference Along a Line

• If two loudspeakers are side by 

side, and one emits the exact 

inverse of the other speaker’s 

wave, then there will be 

destructive interference and the 

sound will completely cancel.

• Headphones with active noise 

reduction measure the ambient 

sound and produce an inverted 

version to add to it, lowering the 

overall intensity of the sound.
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Interference of Spherical Waves

• In practice, sound waves 

from a speaker or light 

waves emitted from a 

lightbulb spread out as 

spherical waves.
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Interference of Spherical Waves

• Interference occurs where 

the waves overlap. 

• The red dot represents a 

point where two wave crests 

overlap, so the interference is 

constructive.

• The black dot is at a point 

where a crest overlaps a 

trough, so the wave 

interference is destructive.
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Interference of Spherical Waves

• Counting the wave fronts, 

we see that the red dot is 

three wavelengths from 

speaker 2 and two 

wavelengths from speaker 1. 

The path-length difference is 

Δr = r2 – r1 = λ

• The path-length of the black 

dot is Δr = ½ λ.  
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• The general rule for identifying whether constructive or 

destructive interference occurs is the same for spherical 

waves as it is for waves traveling along a line.

• Constructive interference occurs when

• Destructive interference occurs when

Interference of Spherical Waves

© 2015 Pearson Education, Inc.



Slide 16-142

QuickCheck 16.16

Two in-phase sources emit sound 

waves of equal wavelength and 

intensity. At the position of the dot,

A. The interference is 

constructive.

B. The interference is destructive.

C. The interference is somewhere between constructive and 

destructive.

D. There’s not enough information to tell about the 

interference.
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QuickCheck 16.16

Two in-phase sources emit sound 

waves of equal wavelength and 

intensity. At the position of the dot,

A. The interference is 

constructive.

B. The interference is destructive.

C. The interference is somewhere between constructive and 

destructive.

D. There’s not enough information to tell about the 

interference.
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QuickCheck 16.17

Two speakers emit sounds of nearly equal frequency, as 

shown. At a point between the two speakers, the sound 

varies from loud to soft. How much time elapses between 

two successive loud moments?

A. 0.5 s

B. 1.0 s

C. 2.0 s

D. 4.0 s
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QuickCheck 16.17

Two speakers emit sounds of nearly equal frequency, as 

shown. At a point between the two speakers, the sound 

varies from loud to soft. How much time elapses between 

two successive loud moments?

A. 0.5 s

B. 1.0 s

C. 2.0 s

D. 4.0 s
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Interference of Spherical Waves
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Example 16.11 Is the sound loud or quiet?

Two speakers are 3.0 m apart 

and play identical tones of 

frequency 170 Hz. Sam stands 

directly in front of one speaker 

at a distance of 4.0 m. Is this a 

loud spot or a quiet spot? Assume 

that the speed of sound in air is 

340 m/s.      

PREPARE FIGURE 16.31 shows a visual overview of the 

situation, showing the positions of and path lengths from 

each speaker. 
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Example 16.11 Is the sound loud or quiet? 
(cont.)

SOLVE Following the steps in 

Tactics Box 16.1, we first 

compute the path-length 

difference. r1, r2, and the 

distance between the speakers 

form a right triangle, so we can 

use the Pythagorean theorem to find 

Thus the path-length difference is    

∆r = r2  r1 = 1.0 m 
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Example 16.11 Is the sound loud or quiet? 
(cont.)

Next, we compute the wavelength: 

The path-length difference is   λ, so this is a point of 

destructive interference. Sam is at a quiet spot. 
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Interference of Spherical Waves

• You are regularly exposed to sound from two separate 

sources: stereo speakers. You don’t hear a pattern of loud 

and soft sounds because the music is playing at a number 

of frequencies and the sound waves are reflected off the 

walls in the room. 
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Example Problem

Two speakers emit identical sinusoidal waves. The speakers 

are placed 4.0 m apart. A listener moving along a line in 

front of the two speakers finds loud and quiet spots as 

shown in the following figure. The grid lines are spaced at 

1.0 m. What is the frequency of the sound from the two 

speakers? 
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Beats

• The superposition of two waves with slightly different 

frequencies can create a wave whose amplitude shows a 

periodic variation.
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Beats

• The ear hears a single tone that is modulated. The 

distinctive sound pattern is called beats.
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Beats

• The air oscillates against your 

eardrum at frequency

• The beat frequency is the 

difference between two 

frequencies that differ slightly:

• fosc determines the pitch, fbeat determines the frequency of 

the modulations. 
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QuickCheck 16.18

You hear 2 beats per second when two sound sources, both 

at rest, play simultaneously. The beats disappear if source 

2 moves toward you while source 1 remains at rest. The 

frequency of source 1 is 500 Hz. The frequency of source 

2 is

A. 496 Hz

B. 498 Hz

C. 500 Hz

D. 502 Hz

E. 504 Hz
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QuickCheck 16.18

You hear 2 beats per second when two sound sources, both 

at rest, play simultaneously. The beats disappear if source 

2 moves toward you while source 1 remains at rest. The 

frequency of source 1 is 500 Hz. The frequency of source 

2 is

A. 496 Hz

B. 498 Hz

C. 500 Hz

D. 502 Hz

E. 504 Hz
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Example 16.12 Detecting bats using beats

The little brown bat is a common bat species in North 

America. It emits echolocation pulses at a frequency of 

40 kHz, well above the range of human hearing. To allow 

observers to “hear” these bats, the bat detector shown in 

FIGURE 16.34 combines the bat’s sound wave at frequency 

f1 with a wave of frequency f2 from a tunable oscillator. 
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Example 16.12 Detecting bats using beats

The resulting beat frequency is isolated with a filter, then 

amplified and sent to a loudspeaker. To what frequency 

should the tunable oscillator be set to produce an audible 

beat frequency of 3 kHz?
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Example 16.12 Detecting bats using beats

SOLVE The beat frequency is , so the 

oscillator frequency and the bat frequency need to differ by 

3 kHz. An oscillator frequency of either 37 kHz or 43 kHz 

will work nicely.
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Example Problem

A typical police radar sends out microwaves at 10.5 GHz. 

The unit combines the wave reflected from a car with the 

original signal and determines the beat frequency. This 

beat frequency is converted into a speed. If a car is 

moving at 20 m/s toward the detector, what will be the 

measured beat frequency? 
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Summary: General Principles
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Summary: General Principles
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Summary: Important Concepts
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Summary: Important Concepts
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Summary: Important Concepts
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Summary: Applications
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Summary: Applications
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Summary
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Summary
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Summary
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