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Suggested Videos for Chapter 14

• Prelecture Videos

• Describing Simple 

Harmonic Motion

• Details of SHM

• Damping and Resonance

• Class Videos

• Oscillations

• Basic Oscillation 

Problems

• Video Tutor Solutions

• Oscillations
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Suggested Simulations for Chapter 14

• ActivPhysics

• 9.1–9.12

• PhETs

• Masses & Springs

• Motion in 2D

• Pendulum Lab
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Chapter 14 Oscillations

Chapter Goal: To understand systems that oscillate with 

simple harmonic motion.
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Chapter 14 Preview
Looking Ahead: Motion that Repeats

• When the woman moves down, the springy ropes pull up. 

This restoring force produces an oscillation: one bounce 

after another. 

• You’ll see many examples of systems with restoring forces 

that lead to oscillatory motion. 

© 2015 Pearson Education, Inc.



Slide 14-6

Chapter 14 Preview
Looking Ahead: Simple Harmonic Motion

• The sand records the motion of the oscillating pendulum. 

The sinusoidal shape tells us that this is simple harmonic 

motion. 

• All oscillations show a similar form. You’ll learn to 

describe and analyze oscillating systems.  
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Chapter 14 Preview
Looking Ahead: Resonance

• When you make a system oscillate at its natural 

frequency, you can get a large amplitude. We call this 

resonance. 

• You’ll learn how resonance of a membrane in the inner ear 

lets you determine the pitch of a musical note. 
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Chapter 14 Preview
Looking Ahead

© 2015 Pearson Education, Inc.
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Chapter 14 Preview
Looking Back: Springs and Restoring Forces

• In Chapter 8, you learned that 

a stretched spring exerts a 

restoring force proportional to 

the stretch:

Fsp = –kΔx

• In this chapter, you’ll see 

how this linear restoring force leads to an oscillation, with 

a frequency determined by the spring constant k.
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Slide 14-10

Chapter 14 Preview
Stop to Think

A hanging spring has length 10 cm. A 100 g mass is hung 

from the spring, stretching it to 12 cm. What will be the 

length of the spring if this mass is replaced by a 200 g 

mass?

A. 14 cm

B. 16 cm

C. 20 cm

D. 24 cm

© 2015 Pearson Education, Inc.
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Reading Question 14.1

The type of function that describes simple harmonic motion 

is

A. Linear.

B. Exponential.

C. Quadratic.

D. Sinusoidal.

E. Inverse.

© 2015 Pearson Education, Inc.
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Reading Question 14.1

The type of function that describes simple harmonic motion 

is

A. Linear.

B. Exponential.

C. Quadratic.

D. Sinusoidal.

E. Inverse.
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Reading Question 14.2

When you displace an object from its equilibrium position 

and the force pushing it back toward equilibrium is 

_________, the resulting motion is simple harmonic motion.

A. Sinusoidal

B. Exponential

C. Quadratic

D. Linear

© 2015 Pearson Education, Inc.
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Reading Question 14.2

When you displace an object from its equilibrium position 

and the force pushing it back toward equilibrium is 

_________, the resulting motion is simple harmonic motion.

A. Sinusoidal

B. Exponential

C. Quadratic

D. Linear
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Reading Question 14.3

A mass is bobbing up and down on a spring. If you increase 

the amplitude of the motion, how does this affect the time 

for one oscillation?

A. The time increases.

B. The time decreases.

C. The time does not change.
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Reading Question 14.3

A mass is bobbing up and down on a spring. If you increase 

the amplitude of the motion, how does this affect the time 

for one oscillation?

A. The time increases.

B. The time decreases.

C. The time does not change.
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Reading Question 14.4

A mass tied to the end of a 1.0-m-long string is swinging 

back and forth. During each swing, it moves 4 cm from its 

lowest point to the right, then 4 cm to the left. One complete 

swing takes about 2 s. If the amplitude of motion is doubled, 

so the mass swings 8 cm to one side and then the other, the 

period of the motion will be

A. 2 s

B. 4 s

C. 6 s

D. 8 s

© 2015 Pearson Education, Inc.



Slide 14-18

Reading Question 14.4

A mass tied to the end of a 1.0-m-long string is swinging 

back and forth. During each swing, it moves 4 cm from its 

lowest point to the right, then 4 cm to the left. One complete 

swing takes about 2 s. If the amplitude of motion is doubled, 

so the mass swings 8 cm to one side and then the other, the 

period of the motion will be

A. 2 s

B. 4 s

C. 6 s

D. 8 s
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Reading Question 14.5

If you drive an oscillator, it will have the largest amplitude 

if you drive it at its _______ frequency.

A. Special

B. Positive

C. Resonant

D. Damped

E. Pendulum
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Reading Question 14.5

If you drive an oscillator, it will have the largest amplitude 

if you drive it at its _______ frequency.

A. Special

B. Positive

C. Resonant

D. Damped

E. Pendulum

© 2015 Pearson Education, Inc.



Section 14.1 Equilibrium and Oscillation

© 2015 Pearson Education, Inc.



Slide 14-22

Equilibrium and Oscillation

• A marble that is free to roll 

inside a spherical bowl has 

an equilibrium position at 

the bottom of the bowl 

where it will rest with no 

net force on it.

• If pushed away from 

equilibrium, the marble’s 

weight leads to a net force 

toward the equilibrium position. This force is the 

restoring force.
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Equilibrium and Oscillation

• When the marble is released 

from the side, it does not 

stop at the bottom of the 

bowl; it rolls up and down 

each side of the bowl, 

moving through the 

equilibrium position.

• This repetitive motion is called oscillation.

• Any oscillation is characterized by a period and frequency. 

© 2015 Pearson Education, Inc.
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Frequency and Period

• For an oscillation, the time to 

complete one full cycle is 

called the period (T) of the 

oscillation.

• The number of cycles per 

second is called the frequency

(f ) of the oscillation.

• The units of frequency are hertz (Hz), or 1 s–1. 

© 2015 Pearson Education, Inc.
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QuickCheck 14.1

A mass oscillates on a horizontal spring with period 

T  2.0 s. What is the frequency?

A. 0.50 Hz

B. 1.0 Hz

C. 2.0 Hz

D. 3.0 Hz

E. 4.0 Hz

© 2015 Pearson Education, Inc.
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QuickCheck 14.1

A mass oscillates on a horizontal spring with period 

T  2.0 s. What is the frequency?

A. 0.50 Hz

B. 1.0 Hz

C. 2.0 Hz

D. 3.0 Hz

E. 4.0 Hz
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QuickCheck 14.2

A mass oscillates on a horizontal spring with period 

T  2.0 s. If the mass is pulled to the right and then released, 

how long will it take for the mass to reach the leftmost point 

of its motion?

A. 1.0 s

B. 1.4 s

C. 2.0 s

D. 2.8 s

E. 4.0 s
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QuickCheck 14.2

A mass oscillates on a horizontal spring with period 

T  2.0 s. If the mass is pulled to the right and then released, 

how long will it take for the mass to reach the leftmost point 

of its motion?

A. 1.0 s

B. 1.4 s

C. 2.0 s

D. 2.8 s

E. 4.0 s
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QuickCheck 14.3

A typical earthquake produces vertical oscillations of the 

earth. Suppose a particular quake oscillates the ground at a 

frequency of 0.15 Hz. As the earth moves up and down, 

what time elapses between the highest point of the motion 

and the lowest point?

A. 1 s

B. 3.3 s

C. 6.7 s

D. 13 s

© 2015 Pearson Education, Inc.
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QuickCheck 14.3

A typical earthquake produces vertical oscillations of the 

earth. Suppose a particular quake oscillates the ground at a 

frequency of 0.15 Hz. As the earth moves up and down, 

what time elapses between the highest point of the motion 

and the lowest point?

A. 1 s

B. 3.3 s

C. 6.7 s

D. 13 s
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Frequency and Period
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Example 14.1 Frequency and period of a radio 
station

An FM radio station broadcasts an oscillating radio wave at 

a frequency of 100 MHz. What is the period of the 

oscillation?

SOLVE The frequency f of oscillations in the radio 

transmitter is 100 MHz = 1.0  10 8 Hz. The period is the 

inverse of the frequency; hence,

© 2015 Pearson Education, Inc.
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Oscillatory Motion

• The graph of an oscillatory motion has the form of a 

cosine function. 

• A graph or a function that has the form of a sine or cosine 

function is called sinusoidal. 

• A sinusoidal oscillation is called simple harmonic motion 

(SHM).

© 2015 Pearson Education, Inc.
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Oscillatory Motion

© 2015 Pearson Education, Inc.
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Linear Restoring Forces and SHM

• If we displace a glider attached 

to a spring from its equilibrium 

position, the spring exerts a 

restoring force back toward 

equilibrium.
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Linear Restoring Forces and SHM

• This is a linear restoring force; 

the net force is toward the 

equilibrium position and is 

proportional to the distance 

from equilibrium.

© 2015 Pearson Education, Inc.
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Motion of a Mass on a Spring

• The amplitude A is the 

object’s maximum 

displacement from 

equilibrium.

• Oscillation about an 

equilibrium position with 

a linear restoring force is 

always simple harmonic 

motion.

© 2015 Pearson Education, Inc.
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Vertical Mass on a Spring

• For a hanging weight, the equilibrium position of the 

block is where it hangs motionless. The spring is stretched 

by ΔL.

© 2015 Pearson Education, Inc.
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Vertical Mass on a Spring

• The value of ΔL is determined by solving the static-

equilibrium problem.

• Hooke’s Law says

• Newton’s first law for the block in equilibrium is

• Therefore the length of the spring at the equilibrium 

position is

© 2015 Pearson Education, Inc.
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Vertical Mass on a Spring

• When the block is above the 

equilibrium position, the 

spring is still stretched by an 

amount ΔL – y.

• The net force on the block is

© 2015 Pearson Education, Inc.

• But k ΔL – mg = 0, from Equation 14.4, so the net force on 

the block is
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Vertical Mass on a Spring

• The role of gravity is to 

determine where the 

equilibrium position is, but 

it doesn’t affect the 

restoring force for 

displacement from the 

equilibrium position.

• Because it has a linear 

restoring force, a mass on a 

vertical spring oscillates 

with simple harmonic 

motion.

© 2015 Pearson Education, Inc.
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Example Problem

A car rides on four wheels that are connected to the body of 

the car by springs that allow the car to move up and down as 

the wheels go over bumps and dips in the road. Each spring 

supports approximately 1/4 the mass of the vehicle. A 

lightweight car has a mass of 2400 lbs. When a 160 lb

person sits on the left front fender, this corner of the car dips 

by about ½. 

A. What is the spring constant of this spring?

B. When four people of this mass are in the car, what is the 

oscillation frequency of the vehicle on the springs?

© 2015 Pearson Education, Inc.
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The Pendulum

• A pendulum is a mass suspended 

from a pivot point by a light string 

or rod.

• The mass moves along a circular 

arc. The net force is the tangential 

component of the weight:

© 2015 Pearson Education, Inc.
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The Pendulum

• The equation is simplified for small 

angles because 

sinθ ≈ θ

• This is called the small-angle 

approximation. Therefore the restoring 

force is

• The force on a pendulum is a linear 

restoring force for small angles, so 

the pendulum will undergo simple 

harmonic motion.

© 2015 Pearson Education, Inc.
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Describing Simple Harmonic Motion

1. The mass starts at its maximum 

positive displacement, y = A. The 

velocity is zero, but the 

acceleration is negative because 

there is a net downward force.

2. The mass is now moving 

downward, so the velocity is 

negative. As the mass nears 

equilibrium, the restoring force—

and thus the magnitude of the 

acceleration—decreases.

3. At this time the mass is moving 

downward with its maximum 

speed. It’s at the equilibrium 

position, so the net force—and 

thus the acceleration—is zero.
© 2015 Pearson Education, Inc.
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Describing Simple Harmonic Motion

4. The velocity is still negative but 

its magnitude is decreasing, so 

the acceleration is positive.

5. The mass has reached the 

lowest point of its motion, a 

turning point. The spring is at 

its maximum extension, so 

there is a net upward force and 

the acceleration is positive.

6. The mass has begun moving 

upward; the velocity and 

acceleration are positive.

© 2015 Pearson Education, Inc.
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Describing Simple Harmonic Motion

7. The mass is passing through the 

equilibrium position again, in the 

opposite direction, so it has a 

positive velocity. There is no net 

force, so the acceleration is zero.

8. The mass continues moving 

upward. The velocity is positive 

but its magnitude is decreasing, so 

the acceleration is negative.

9. The mass is now back at its 

starting position. This is another 

turning point. The mass is at rest 

but will soon begin moving 

downward, and the cycle will 

repeat.

© 2015 Pearson Education, Inc.
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Describing Simple Harmonic Motion

• The position-versus-time graph for oscillatory motion is a 

cosine curve:

• x(t) indicates that the position is a function of time.

• The cosine function can be written in terms of frequency:

© 2015 Pearson Education, Inc.
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Describing Simple Harmonic Motion

• The velocity graph is an upside-down sine function with 

the same period T:

• The restoring force causes an acceleration:

• The acceleration-versus-time graph is inverted from the 

position-versus-time graph and can also be written

© 2015 Pearson Education, Inc.
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Describing Simple Harmonic Motion

© 2015 Pearson Education, Inc. Text: p. 445
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Example 14.2 Motion of a glider on a spring

An air-track glider 

oscillates horizontally on 

a spring at a frequency of 

0.50 Hz. Suppose the 

glider is pulled to the right 

of its equilibrium position 

by 12 cm and then 

released. Where will the 

glider be 1.0 s after its 

release? What is its 

velocity at this point?

© 2015 Pearson Education, Inc.
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Example 14.2 Motion of a glider on a spring 
(cont.)

PREPARE The glider 

undergoes simple harmonic 

motion with amplitude 12 

cm. The frequency is 0.50 

Hz, so the period is 

T = 1/f = 2.0 s. The glider 

is released at maximum 

extension from the 

equilibrium position, 

meaning that we can take 

this point to be t = 0.

© 2015 Pearson Education, Inc.
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Example 14.2 Motion of a glider on a spring 
(cont.)

SOLVE 1.0 s is exactly half

the period. As the graph 

of the motion in FIGURE 

14.10 shows, half a cycle 

brings the glider to its left 

turning point, 12 cm to the 

left of the equilibrium 

position. The velocity at this point is zero.

ASSESS Drawing a graph was an important step that helped 

us make sense of the motion.

© 2015 Pearson Education, Inc.
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Example Problem

A 500 g block is attached to a spring on a frictionless 

horizontal surface. The block is pulled to stretch the spring 

by 10 cm, then gently released. A short time later, as the 

block passes through the equilibrium position, its speed is 

1.0 m/s. 

A. What is the block’s period of oscillation?

B. What is the block’s speed at the point where the spring is 

compressed by 5.0 cm? 

© 2015 Pearson Education, Inc.
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Connection to Uniform Circular Motion

• Circular motion and simple 

harmonic motion are motions 

that repeat.

• Uniform circular motion 

projected onto one dimension 

is simple harmonic motion.

© 2015 Pearson Education, Inc.
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Connection to Uniform Circular Motion

• The x-component of the circular motion when the particle 

is at angle ϕ is x = Acosϕ.

• The angle at a later time is ϕ = ωt.

• ω is the particle’s angular velocity: ω = 2πf.

© 2015 Pearson Education, Inc.
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Connection to Uniform Circular Motion

• Therefore the particle’s x-component is expressed

x(t) = A cos(2ft)

• This is the same equation for the position of a mass on a 

spring.

• The x-component of a particle in uniform circular motion 

is simple harmonic motion. 

© 2015 Pearson Education, Inc.
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Connection to Uniform Circular Motion

• The x-component of the velocity vector is

vx = v sin ϕ = (2f )A sin(2ft)

• This corresponds to simple harmonic motion if we define 

the maximum speed to be 

vmax = 2fA

© 2015 Pearson Education, Inc.
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Connection to Uniform Circular Motion

• The x-component of the acceleration vector is

ax = a cos ϕ = (2f )2A cos(2ft)

• The maximum acceleration is thus

amax = (2f )2A 

• For simple harmonic motion, if you know the amplitude and 

frequency, the motion is completely specified.

© 2015 Pearson Education, Inc.
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Connection to Uniform Circular Motion

© 2015 Pearson Education, Inc.
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QuickCheck 14.9

A mass oscillates on a horizontal spring. It’s velocity is vx

and the spring exerts force Fx. At the time indicated by the 

arrow, 

A. vx is  and Fx is 

B. vx is  and Fx is –

C. vx is – and Fx is 0

D. vx is 0 and Fx is 

E. vx is 0 and Fx is –

© 2015 Pearson Education, Inc.
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QuickCheck 14.9

A mass oscillates on a horizontal spring. It’s velocity is vx

and the spring exerts force Fx. At the time indicated by the 

arrow, 

A. vx is  and Fx is 

B. vx is  and Fx is –

C. vx is – and Fx is 0

D. vx is 0 and Fx is 

E. vx is 0 and Fx is –
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QuickCheck 14.10

A mass oscillates on a horizontal spring. It’s velocity is vx

and the spring exerts force Fx. At the time indicated by the 

arrow,

A. vx is  and Fx is 

B. vx is  and Fx is –

C. vx is – and Fx is 0

D. vx is 0 and Fx is 

E. vx is 0 and Fx is –
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QuickCheck 14.10

A mass oscillates on a horizontal spring. It’s velocity is vx

and the spring exerts force Fx. At the time indicated by the 

arrow,

A. vx is  and Fx is 

B. vx is  and Fx is –

C. vx is – and Fx is 0

D. vx is 0 and Fx is 

E. vx is 0 and Fx is –
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QuickCheck 14.11

A block oscillates on a vertical spring. When the block is at 

the lowest point of the oscillation, it’s acceleration ay is

A. Negative.

B. Zero.

C. Positive.

© 2015 Pearson Education, Inc.
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QuickCheck 14.11

A block oscillates on a vertical spring. When the block is at 

the lowest point of the oscillation, it’s acceleration ay is

A. Negative.

B. Zero.

C. Positive.
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Try It Yourself: SHM in Your Microwave

The next time you are warming 

a cup of water in a microwave 

oven, try this: As the turntable

rotates, moving the cup in a 

circle, stand in front of the 

oven with your eyes level with 

the cup and watch it, paying 

attention to the side-to-side 

motion. You’ll see something like the turntable 

demonstration. The cup’s apparent motion is the horizontal 

component of the turntable’s circular motion—simple 

harmonic motion!

© 2015 Pearson Education, Inc.
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Example 14.3 Measuring the sway of a tall 
building

The John Hancock Center in Chicago is 100 stories high. 

Strong winds can cause the building to sway, as is the case 

with all tall buildings. On particularly windy days, the top of 

the building oscillates with an amplitude of 40 cm (≈16 in) 

and a period of 7.7 s. What are the maximum speed and 

acceleration of the top of the building?

© 2015 Pearson Education, Inc.
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Example 14.3 Measuring the sway of a tall 
building

PREPARE We will assume that the oscillation of the building 

is simple harmonic motion with amplitude A = 0.40 m. The 

frequency can be computed from the period:

© 2015 Pearson Education, Inc.
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Example 14.3 Measuring the sway of a tall 
building (cont.)

SOLVE We can use the equations for maximum velocity and 

acceleration in Synthesis 14.1 to compute:

vmax = 2fA = 2 (0.13 Hz)(0.40 m) = 0.33 m/s

amax = (2f )2A = [2 (0.13 Hz)]2(0.40 m) = 0.27 m/s2

In terms of the free-fall acceleration, the maximum 

acceleration is amax = 0.027g.

© 2015 Pearson Education, Inc.
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Example 14.3 Measuring the sway of a tall 
building (cont.)

ASSESS The acceleration is quite small, as you would 

expect; if it were large, building occupants would certainly 

complain! Even if they don’t notice the motion directly, 

office workers on high floors of tall buildings may 

experience a bit of nausea when the oscillations are large 

because the acceleration affects the equilibrium organ in the 

inner ear.

© 2015 Pearson Education, Inc.
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Example Problem

A 5.0 kg mass is suspended from a spring. Pulling the mass 

down by an additional 10 cm takes a force of 20 N. If the 

mass is then released, it will rise up and then come back 

down. How long will it take for the mass to return to its 

starting point 10 cm below its equilibrium position? 

© 2015 Pearson Education, Inc.
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Energy in Simple Harmonic Motion

• The interplay between kinetic and potential energy is very 

important for understanding simple harmonic motion.

© 2015 Pearson Education, Inc.
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Energy in Simple Harmonic Motion

• For a mass on a spring, when the 

object is at rest the potential energy 

is a maximum and the kinetic energy 

is 0.

• At the equilibrium position, the 

kinetic energy is a maximum and the 

potential energy is 0.

© 2015 Pearson Education, Inc.
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Energy in Simple Harmonic Motion

• The potential energy for the mass on 

a spring is

• The conservation of energy can be 

written:

© 2015 Pearson Education, Inc.
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Energy in Simple Harmonic Motion

• At maximum displacement, the 

energy is purely potential:

• At x = 0, the equilibrium position, the 

energy is purely kinetic:

© 2015 Pearson Education, Inc.
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Finding the Frequency for Simple Harmonic 
Motion

• Because of conservation of energy, the maximum potential 

energy must be equal to the maximum kinetic energy:

• Solving for the maximum velocity we find

• Earlier we found that 

© 2015 Pearson Education, Inc.
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QuickCheck 14.6

A set of springs all have initial length 10 cm. Each spring now 

has a mass suspended from its end, and the different springs 

stretch as shown below.

Now, each mass is pulled down by an additional 1 cm and 

released, so that it oscillates up and down. Which of the 

oscillating systems has the highest frequency?
© 2015 Pearson Education, Inc.
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QuickCheck 14.6

A set of springs all have initial length 10 cm. Each spring now 

has a mass suspended from its end, and the different springs 

stretch as shown below.

Now, each mass is pulled down by an additional 1 cm and 

released, so that it oscillates up and down. Which of the 

oscillating systems has the highest frequency?
© 2015 Pearson Education, Inc.

C

C



Slide 14-83

QuickCheck 14.7

Two identical blocks oscillate on different horizontal 

springs. Which spring has the larger spring constant?

A. The red spring

B. The blue spring

C. There’s not enough 

information to tell. 

© 2015 Pearson Education, Inc.



Slide 14-84

QuickCheck 14.7

Two identical blocks oscillate on different horizontal 

springs. Which spring has the larger spring constant?

A. The red spring

B. The blue spring

C. There’s not enough 

information to tell. 

© 2015 Pearson Education, Inc.
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QuickCheck 14.8

A block of mass m oscillates on a horizontal spring with 

period T  2.0 s. If a second identical block is glued to the 

top of the first block, the new period will be

A. 1.0 s

B. 1.4 s

C. 2.0 s

D. 2.8 s

E. 4.0 s

© 2015 Pearson Education, Inc.
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QuickCheck 14.8

A block of mass m oscillates on a horizontal spring with 

period T  2.0 s. If a second identical block is glued to the 

top of the first block, the new period will be

A. 1.0 s

B. 1.4 s

C. 2.0 s

D. 2.8 s

E. 4.0 s
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Finding the Frequency for Simple Harmonic 
Motion

• The frequency and period 

of simple harmonic motion 

are determined by the 

physical properties of the 

oscillator.

• The frequency and period 

of simple harmonic motion 

do not depend on the 

amplitude A.

© 2015 Pearson Education, Inc.
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QuickCheck 14.4

A block oscillates on a very long horizontal spring. The 

graph shows the block’s kinetic energy as a function of 

position. What is the spring constant? 

A. 1 N/m

B. 2 N/m

C. 4 N/m

D. 8 N/m

© 2015 Pearson Education, Inc.
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QuickCheck 14.4

A block oscillates on a very long horizontal spring. The 

graph shows the block’s kinetic energy as a function of 

position. What is the spring constant? 

A. 1 N/m

B. 2 N/m

C. 4 N/m

D. 8 N/m
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QuickCheck 14.5

A mass oscillates on a horizontal spring with period 

T  2.0 s. If the amplitude of the oscillation is doubled, 

the new period will be

A. 1.0 s

B. 1.4 s

C. 2.0 s

D. 2.8 s

E. 4.0 s
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QuickCheck 14.5

A mass oscillates on a horizontal spring with period 

T  2.0 s. If the amplitude of the oscillation is doubled, 

the new period will be

A. 1.0 s

B. 1.4 s

C. 2.0 s

D. 2.8 s

E. 4.0 s
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Finding the Frequency for Simple Harmonic 
Motion

© 2015 Pearson Education, Inc.
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QuickCheck 14.12

A mass oscillates up and 

down on a spring; the motion 

is illustrated at right.

1. At which time or times shown is the acceleration 

zero?

2. At which time or times shown is the kinetic energy 

a maximum?

3. At which time or times shown is the potential energy 

a maximum?
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QuickCheck 14.12

A mass oscillates up and 

down on a spring; the motion 

is illustrated at right.

1. At which time or times shown is the acceleration 

zero?

2. At which time or times shown is the kinetic energy 

a maximum?

3. At which time or times shown is the potential energy 

a maximum?
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QuickCheck 14.13

Four different masses are hung from four springs with an 

unstretched length of 10 cm, causing the springs to stretch as 

noted in the following diagram:

Now, each mass is pulled down by an additional 1 cm and 

released, so that it oscillates up and down. Which of the 

oscillating systems has the highest frequency?
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QuickCheck 14.13

Four different masses are hung from four springs with an 

unstretched length of 10 cm, causing the springs to stretch as 

noted in the following diagram:

Now, each mass is pulled down by an additional 1 cm and 

released, so that it oscillates up and down. Which of the 

oscillating systems has the highest frequency?
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QuickCheck 14.14

Four 100-g masses are hung from four springs, each with an 

unstretched length of 10 cm. The four springs stretch as noted in the 

following diagram:

Now, each of the masses is lifted a small distance, released, and 

allowed to oscillate. Which mass oscillates with the highest frequency?

A. Mass A

B. Mass B

C. Mass C
© 2015 Pearson Education, Inc.

D. Mass D

E. All masses oscillate with the 

same frequency.
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QuickCheck 14.14

Four 100-g masses are hung from four springs, each with an 

unstretched length of 10 cm. The four springs stretch as noted in the 

following diagram:

Now, each of the masses is lifted a small distance, released, and 

allowed to oscillate. Which mass oscillates with the highest frequency?

A. Mass A

B. Mass B

C. Mass C
© 2015 Pearson Education, Inc.

D. Mass D

E. All masses oscillate with the 

same frequency.
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Example 14.7 Finding the frequency of an 
oscillator

A spring has an unstretched

length of 10.0 cm. A 25 g 

mass is hung from the spring, 

stretching it to a length of 15.0 

cm. If the mass is pulled down 

and released so that it 

oscillates, what will be the 

frequency of the oscillation?
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Example 14.7 Finding the frequency of an 
oscillator (cont.)

PREPARE The spring provides a 

linear restoring force, so the 

motion will be simple 

harmonic, as noted in Tactics 

Box 14.1. The oscillation 

frequency depends on the 

spring constant, which we can 

determine from the stretch of 

the spring. FIGURE 14.17 

gives a visual overview of the 

situation.
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Example 14.7 Finding the frequency of an 
oscillator (cont.)

SOLVE When the mass hangs at 

rest, after stretching the spring 

to 15 cm, the net force on it 

must be zero. Thus the 

magnitude of the upward 

spring force equals the 

downward weight, giving 

k ΔL = mg. The spring constant 

is thus
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Example 14.7 Finding the frequency of an 
oscillator (cont.)

Now that we know the spring 

constant, we can compute the 

oscillation frequency:
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Example 14.7 Finding the frequency of an 
oscillator (cont.)

ASSESS 2.2 Hz is 2.2 

oscillations per second. This 

seems like a reasonable 

frequency for a mass on a 

spring. A frequency in the kHz 

range (thousands of 

oscillations per second) would 

have been suspect!
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Section 14.5 Pendulum Motion
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Pendulum Motion

• The tangential restoring 

force for a pendulum of 

length L displaced by arc 

length s is

• This is the same linear 

restoring force as the spring 

but with the constants mg/L

instead of k. 
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Pendulum Motion

• The oscillation of a pendulum 

is simple harmonic motion; 

the equations of motion can 

be written for the arc length 

or the angle:

s(t) = A cos(2πft) 

or  

θ(t) = θmax cos(2πft)
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Pendulum Motion

• The frequency can be 

obtained from the equation 

for the frequency of the 

mass on a spring by 

substituting mg/L in place 

of k:
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Pendulum Motion

• As for a mass on a spring, the 

frequency does not depend on 

the amplitude. Note also that 

the frequency, and hence 

the period, is independent 

of the mass. It depends only 

on the length of the 

pendulum.
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QuickCheck 14.15

A pendulum is pulled to 

the side and released.

The mass swings to the 

right as shown. The 

diagram shows positions for half of a complete oscillation.

1. At which point or points is the speed the highest?

2. At which point or points is the acceleration the 

greatest?

3. At which point or points is the restoring force the 

greatest?
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QuickCheck 14.15

A pendulum is pulled to 

the side and released.

The mass swings to the 

right as shown. The 

diagram shows positions for half of a complete oscillation.

1. At which point or points is the speed the highest?

2. At which point or points is the acceleration the 

greatest?

3. At which point or points is the restoring force the 

greatest?
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QuickCheck 14.16

A mass on the end 

of a string is pulled 

to the side and released.

1. At which time or times shown is the acceleration 

zero?

2. At which time or times shown is the kinetic energy 

a maximum?

3. At which time or times shown is the potential energy 

a maximum? 
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QuickCheck 14.16

A mass on the end 

of a string is pulled 

to the side and released.

1. At which time or times shown is the acceleration 

zero?

2. At which time or times shown is the kinetic energy 

a maximum?

3. At which time or times shown is the potential energy 

a maximum? 

© 2015 Pearson Education, Inc.
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QuickCheck 14.17

A ball on a massless, rigid rod oscillates as a simple 

pendulum with a period of 2.0 s. If the ball is replaced with 

another ball having twice the mass, the period will be

A. 1.0 s

B. 1.4 s

C. 2.0 s

D. 2.8 s

E. 4.0 s
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QuickCheck 14.17

A ball on a massless, rigid rod oscillates as a simple 

pendulum with a period of 2.0 s. If the ball is replaced with 

another ball having twice the mass, the period will be

A. 1.0 s

B. 1.4 s

C. 2.0 s

D. 2.8 s

E. 4.0 s
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QuickCheck 14.18

On Planet X, a ball on a massless, rigid rod oscillates as a 

simple pendulum with a period of 2.0 s. If the pendulum is 

taken to the moon of Planet X, where the free-fall 

acceleration g is half as 

big, the period will be

A. 1.0 s

B. 1.4 s

C. 2.0 s

D. 2.8 s

E. 4.0 s
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QuickCheck 14.18

On Planet X, a ball on a massless, rigid rod oscillates as a 

simple pendulum with a period of 2.0 s. If the pendulum is 

taken to the moon of Planet X, where the free-fall 

acceleration g is half as 

big, the period will be

A. 1.0 s

B. 1.4 s

C. 2.0 s

D. 2.8 s

E. 4.0 s
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QuickCheck 14.19

A series of pendulums with different length strings and different 

masses is shown below. Each pendulum is pulled to the side by 

the same (small) angle, the pendulums are released, and they 

begin to swing from side to side.

Which of the pendulums oscillates with the highest frequency?
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QuickCheck 14.19

A series of pendulums with different length strings and different 

masses is shown below. Each pendulum is pulled to the side by 

the same (small) angle, the pendulums are released, and they 

begin to swing from side to side.

Which of the pendulums oscillates with the highest frequency?
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Example 14.10 Designing a pendulum for a 
clock

A grandfather clock is designed so that one swing of the 

pendulum in either direction takes 1.00 s. What is the length 

of the pendulum?

PREPARE One period of the pendulum is two swings, so the 

period is T = 2.00 s.
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Example 14.10 Designing a pendulum for a 
clock (cont.)

SOLVE The period is independent of the mass and depends 

only on the length. From Equation 14.27,

Solving for L, we find

© 2015 Pearson Education, Inc.



Slide 14-121

Example 14.10 Designing a pendulum for a 
clock (cont.)

ASSESS A pendulum clock with a “tick” or “tock” each 

second requires a long pendulum of about 1 m—which is 

why these clocks were original known as “tall case clocks.”
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Physical Pendulums and Locomotives

• A physical pendulum is a 

pendulum whose mass is 

distributed along its length.

• The position of the center of 

gravity of the physical 

pendulum is at a distance d

from the pivot.
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Physical Pendulums and Locomotives

• The moment of inertia I is a measure of an object’s resistance to 

rotation. Increasing the moment of inertia while keeping other 

variables equal should cause the frequency to decrease. In an 

expression for the frequency of the physical pendulum, we would 

expect I to appear in the denominator.

• When the pendulum is pushed to the side, a gravitational torque 

pulls it back. The greater the distance d of the center of gravity from 

the pivot point, the greater the torque. Increasing this distance while 

keeping the other variables constant should cause the frequency to 

increase. In an expression for the frequency of the physical 

pendulum, we would expect d to appear in the numerator.
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Example 14.11 Finding the frequency of a 
swinging leg

A student in a biomechanics lab measures the length of his 

leg, from hip to heel, to be 0.90 m. What is the frequency of 

the pendulum motion of the student’s leg? What is the 

period?

PREPARE We can model a human leg reasonably well as a 

rod of uniform cross section, pivoted at one end (the hip). 

Recall from Chapter 7 that the moment of inertia of a rod 

pivoted about its end is 1/3mL2. The center of gravity of a 

uniform leg is at the midpoint, so d = L/2.
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Example 14.11 Finding the frequency of a 
swinging leg (cont.)

SOLVE The frequency of a physical pendulum is given by 

Equation 14.28. Before we put in numbers, we will use 

symbolic relationships and simplify:
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Example 14.11 Finding the frequency of a 
swinging leg (cont.)

The expression for the frequency is similar to that for the 

simple pendulum, but with an additional numerical factor of 

3/2 inside the square root. The numerical value of the 

frequency is

The period is
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Example 14.11 Finding the frequency of a 
swinging leg (cont.)

ASSESS Notice that we didn’t need to know the mass of the 

leg to find the period. The period of a physical pendulum 

does not depend on the mass, just as it doesn’t for the simple 

pendulum. The period depends only on the distribution of 

mass. When you walk, swinging your free leg forward to 

take another stride corresponds to half a period of this 

pendulum motion. For a period of 1.6 s, this is 0.80 s. For a 

normal walking pace, one stride in just under one second 

sounds about right.
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Try It Yourself: How Do You Hold Your Arms?

You maintain your balance when

walking or running by moving 

your arms back and forth 

opposite the motion of your legs.

You hold your arms so that the 

natural period of their motion 

matches that of your legs. At a 

normal walking pace, your arms are extended and naturally 

swing at the same period as your legs. When you run, your gait 

is more rapid. To decrease the period of the pendulum motion of 

your arms to match, you bend them at the elbows, shortening 

their effective length and increasing the natural frequency of 

oscillation. To test this for yourself, try running fast with your 

arms fully extended. It’s quite awkward!
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Section 14.6 Damped Oscillations
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Damped Oscillation

• An oscillation that runs down and stops is called a 

damped oscillation.

• For a pendulum, the main energy loss is air resistance, or 

the drag force.

• As an oscillation decays, the rate of decay decreases; the 

difference between successive peaks is less. 
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Damped Oscillation

• Damped oscillation causes xmax to 

decrease with time as

xmax(t) = Aet/τ

where e ≈ 2.718 is the base of the 

natural logarithm and A is the initial 

amplitude.

• The steady decrease in xmax is the 

exponential decay.

• The constant τ is the time constant.
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Damped Oscillation

© 2015 Pearson Education, Inc.
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Example Problem

A 500 g mass on a string oscillates as a pendulum. The 

pendulum’s energy decays to 50% of its initial value in 30 s. 

What is the value of the damping constant? 
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Different Amounts of Damping

• Mathematically, the oscillation never ceases, however the 

amplitude will be so small that it is undetectable.

• For practical purposes, the time constant τ is the lifetime of 

the oscillation—the measure of how long it takes to decay.

• If τ << T, the oscillation persists over many periods and 

the amplitude decrease is small.

• If τ >> T, the oscillation will damp quickly.
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Section 14.7 Driven Oscillations and 
Resonance
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Driven Oscillations and Resonance

• Driven oscillation is the motion of an oscillator that is 

subjected to a periodic external force.

• The natural frequency f0 of an oscillator is the frequency 

of the system if it is displaced from equilibrium and 

released.

• The driving frequency fext is a periodic external force of 

frequency. It is independent of the natural frequency.
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Driven Oscillations and Resonance

• An oscillator’s response 

curve is the graph of 

amplitude versus driving 

frequency. 

• A resonance is the large-

amplitude response to a 

driving force whose 

frequency matches the 

natural frequency of the 

system.

• The natural frequency is often called the resonance 

frequency.
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Driven Oscillations and Resonance

• The amplitude can become exceedingly large when the 

frequencies match, especially when there is very little 

damping.
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QuickCheck 14.20

A series of pendulums with different length strings and different 

masses is shown below. Each pendulum is pulled to the side by 

the same (small) angle, the pendulums are released, and they 

begin to swing from side to side.

Which of the pendulums oscillates with the lowest frequency? 
© 2015 Pearson Education, Inc.
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QuickCheck 14.20

A series of pendulums with different length strings and different 

masses is shown below. Each pendulum is pulled to the side by 

the same (small) angle, the pendulums are released, and they 

begin to swing from side to side.

Which of the pendulums oscillates with the lowest frequency? 
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Resonance and Hearing

• Resonance in a system means that certain frequencies 

produce a large response and others do not. Resonances 

enable frequency discrimination in the ear.
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Resonance and Hearing

• In a simplified model of the 

cochlea, sound waves produce 

large-amplitude vibrations of the 

basilar membrane at resonances. 

Lower-frequency sound causes a 

response farther from the stapes.

• Hair cells sense the vibration and 

send signals to the brain.
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Resonance and Hearing

• The fact that different 

frequencies produce maximal 

response at different positions 

allows your brain to very 

accurately determine frequency 

because a small shift in 

frequency causes a detectable 

change in the position of the 

maximal response. 
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Summary: General Principles

© 2015 Pearson Education, Inc.

Text: p. 462



Slide 14-145

Summary: General Principles

© 2015 Pearson Education, Inc. Text: p. 462



Slide 14-146

Summary: Important Concepts
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Summary: Important Concepts
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Summary: Applications
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Summary: Applications
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Summary: Applications
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Summary
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Summary

© 2015 Pearson Education, Inc.

Text: p. 462



Slide 14-153

Summary
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