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Suggested Videos for Chapter 13

• Prelecture Videos

• Pressure in Fluids

• Buoyancy

• Class Videos

• Buoyancy and Density 

Part 1

• Buoyancy and Density 

Part 2

• Continuity

• Video Tutor Solutions

• Fluids

• Video Tutor Demos

• Pressure in Water and 

Alcohol 

• Water Level in Pascal’s 

Vases 

• Weighing Weights in Water 

• Air Jet Blows between 

Bowling Balls
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Suggested Simulations for Chapter 13

• PhETs

• Gas Properties

• States of Matter

• Balloons & Buoyancy
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Chapter 13 Fluids

Chapter Goal: To understand the static and dynamic 

properties of fluids. 
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Chapter 13 Preview
Looking Ahead: Pressure in Liquids

• A liquid’s pressure increases with depth. The high pressure 

at the base of this water tower pushes water throughout the 

city. 

• You’ll learn about hydrostatics—how liquids behave 

when they’re in equilibrium. 
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Chapter 13 Preview
Looking Ahead: Buoyancy

• These students are competing in a concrete canoe contest. 

How can such heavy, dense objects stay afloat? 

• You’ll learn how to find the buoyant force on an object in 

a fluid using Archimedes’ principle. 
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Chapter 13 Preview
Looking Ahead: Fluid Dynamics

• Moving fluids can exert large forces. The air passing this 

massive airplane’s wings can lift it into the air. 

• You’ll learn to use Bernoulli’s equation to predict the 

pressures and forces due to moving fluids. 
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Chapter 13 Preview
Looking Ahead

© 2015 Pearson Education, Inc.

Text: p. 398
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Chapter 13 Preview
Looking Back: Equilibrium

• In Section 5.1, you learned that 

for an object to be at rest—in 

static equilibrium—the net 

force on it must be zero. We’ll 

use the principle of equilibrium 

in this chapter to understand 

how an object floats.

• This mountain goat is in equilibrium: Its weight is 

balanced by the normal force of the rock.
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Chapter 13 Preview
Stop to Think

Three identical books are stacked vertically. The normal 

force of book 1 on book 2 is

A. Equal to the weight of one book.

B. Less than the weight of one book.

C. Greater than the weight of one book.
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Reading Question 13.1

What is the SI unit of pressure?

A. The newton

B. The erg

C. The pascal

D. The poise

© 2015 Pearson Education, Inc.
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Reading Question 13.1

What is the SI unit of pressure?

A. The newton

B. The erg

C. The pascal

D. The poise
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Reading Question 13.2

Is gauge pressure larger, smaller, or the same as absolute 

pressure?

A. Greater

B. Smaller

C. The same
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Reading Question 13.2

Is gauge pressure larger, smaller, or the same as absolute 

pressure?

A. Greater

B. Smaller

C. The same

© 2015 Pearson Education, Inc.



Slide 13-15

Reading Question 13.3

The buoyant force on an object submerged in a liquid 

depends on

A. The object’s mass.

B. The object’s volume.

C. The density of the liquid.

D. All of the above.
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Reading Question 13.3

The buoyant force on an object submerged in a liquid 

depends on

A. The object’s mass.

B. The object’s volume.

C. The density of the liquid.

D. All of the above.
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Reading Question 13.4

Bernoulli’s equation is a relationship between a fluid’s

A. Temperature and volume.

B. Volume and pressure.

C. Mass and density.

D. Speed and pressure.
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Reading Question 13.4

Bernoulli’s equation is a relationship between a fluid’s

A. Temperature and volume.

B. Volume and pressure.

C. Mass and density.

D. Speed and pressure.
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Reading Question 13.5

When a viscous fluid flows in a tube, its velocity is

A. Greatest at the wall of the tube.

B. Greatest at the center of the tube.

C. The same everywhere.
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Reading Question 13.5

When a viscous fluid flows in a tube, its velocity is

A. Greatest at the wall of the tube.
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Fluids and Density

• A fluid is a substance that flows. 

• Liquids and gases are fluids.

• Gases are compressible; the volume 

of a gas is easily increased or 

decreased.

• Liquids are nearly incompressible; 

the molecules are packed closely, yet 

they can move around.
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Density

• The mass density is the ratio of mass to volume:

• The SI units of mass density are kg/m3. 

• Gasoline has a mass density of 680 kg/m3, meaning there 

are 680 kg of gasoline for each 1 cubic meter of the liquid.
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Density
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Example 13.1 Weighing the air in a living room

What is the mass of air in a living room with dimensions 4.0 m 

6.0 m  2.5 m?

PREPARE Table 13.1 gives air density at a temperature of 20°C, 

which is about room temperature.

SOLVE The room’s volume is

V = (4.0 m)  (6.0 m)  (2.5 m) = 60 m3

The mass of the air is

m = ρV = (1.20 kg/m3)(60 m3) = 72 kg

ASSESS This is perhaps more mass—about that of an adult 

person—than you might have expected from a substance that 

hardly seems to be there. For comparison, a swimming pool this 

size would contain 60,000 kg of water.
© 2015 Pearson Education, Inc.
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Pressure

• Liquids exert forces on the 

walls of their containers. 

• The pressure is the ratio of the 

force to the area on which the 

force is exerted:

• The fluid’s pressure pushes on 

all parts of the fluid itself, 

forcing the fluid out of a 

container with holes.
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Pressure

• We can measure the pressure in a liquid with a simple 

device. We find that pressure is everywhere in the fluid; 

different parts of a fluid are pushing against each other.
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Pressure in Liquids

• The force of gravity (the weight 

of the liquid) is responsible for 

the pressure in the liquid.

• The horizontal forces cancel each 

other out.

• The vertical forces balance:

pA = p0A + mg

© 2015 Pearson Education, Inc.



Slide 13-30

Pressure in Liquids

• The liquid is a cylinder of cross-

section area A and height d. The 

mass is m = ρAd. The pressure at 

depth d is 

• Because we assumed that the fluid 

is at rest, this pressure is the 

hydrostatic pressure.
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Pressure in Liquids

• A connected liquid in hydrostatic equilibrium rises to 

the same height in all open regions of the container.

• In hydrostatic equilibrium, the pressure is the same at 

all points on a horizontal line through a connected 

liquid of a single kind.

© 2015 Pearson Education, Inc.
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QuickCheck 13.1

An iceberg floats in a shallow sea. What can you say about 

the pressures at points 1 and 2?

A. p1 > p2

B. p1 = p2

C. p1 < p2

© 2015 Pearson Education, Inc.
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QuickCheck 13.1

An iceberg floats in a shallow sea. What can you say about 

the pressures at points 1 and 2?

A. p1 > p2
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Hydrostatic pressure is the same at all points on a 

horizontal line through a connected fluid.
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QuickCheck 13.2

What can you say about the pressures at points 1 and 2?

A. p1 > p2

B. p1 < p2

C. p3 = p1

© 2015 Pearson Education, Inc.
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QuickCheck 13.2

What can you say about the pressures at points 1 and 2?

A. p1 > p2

B. p1 < p2

C. p3 = p1
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Example 13.3 Pressure in a closed tube

Water fills the tube shown in 

FIGURE 13.7. What is the 

pressure at the top of the 

closed tube?

PREPARE This is a liquid in 

hydrostatic equilibrium. The 

closed tube is not an open 

region of the container, so the water cannot rise to an equal 

height. Nevertheless, the pressure is still the same at all 

points on a horizontal line. In particular, the pressure at the 

top of the closed tube equals the pressure in the open tube at 

the height of the dashed line. Assume p0 = 1 atm.

© 2015 Pearson Education, Inc.
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Example 13.3 Pressure in a closed tube (cont.)

SOLVE A point 40 cm above the bottom of the open tube 

is at a depth of 60 cm. The pressure at this depth is

p = p0 + ρgd

= (1.01  105 Pa) + (1000 kg/m3)(9.80 m/s2)(0.60 m)

= 1.07  105 Pa = 1.06 atm

ASSESS The water column that 

creates this pressure is not very

tall, so it makes sense that the 

pressure is only a little higher

than atmospheric pressure.

© 2015 Pearson Education, Inc.
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QuickCheck 13.3

What can you say about the pressures at points 1, 2, and 3?

A. p1 = p2 = p3

B. p1 = p2 > p3

C. p3 > p1 = p2

D. p3 > p1 > p2

E. p1 = p3 > p2

© 2015 Pearson Education, Inc.
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QuickCheck 13.3

What can you say about the pressures at points 1, 2, and 3?

A. p1 = p2 = p3

B. p1 = p2 > p3

C. p3 > p1 = p2

D. p3 > p1 > p2

E. p1 = p3 > p2
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increases with depth.
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Pressure in Liquids
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Atmospheric Pressure

• Gas is compressible, so the air 

in the atmosphere becomes 

less dense with increasing 

altitude.

• 99% of the air in our 

atmosphere is below 30 km.

• Atmospheric pressure varies 

with altitude and with changes 

in the weather.
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Measuring and Using Pressure

© 2015 Pearson Education, Inc.
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Manometers and Barometers

• A manometer measures the 

gas pressure.

• The tube is filled with 

liquid (often mercury). 

Since pressures on a 

horizontal line are equal, p1

is the gas pressure, p2 is the 

hydrostatic pressure at 

depth d = h.

• Equating the two pressures 

gives

pgas = 1 atm + ρgh
© 2015 Pearson Education, Inc.
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Manometers and Barometers

• A barometer measures the 

atmospheric pressure patmos.

• A glass tube is placed in a beaker of 

the same liquid. Some, but not all 

liquid leaves the tube.

• p2 is the pressure due to the weight 

of the liquid in the tube and p1 = 

patmos.

• Equating the two pressures gives

patmos = ρgh

© 2015 Pearson Education, Inc.
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Example 13.4 Pressure in a tube with two 
liquids

A U-shaped tube is closed at 

one end; the other end is open

to the atmosphere. Water fills 

the side of the tube that includes 

the closed end, while oil, floating 

on the water, fills the side of the 

tube open to the atmosphere. 

The two liquids do not mix. The 

height of the oil above the point where the two liquids touch 

is 75 cm, while the height of the closed end of the tube 

above this point is 25 cm. What is the gauge pressure at the 

closed end?
© 2015 Pearson Education, Inc.
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Example 13.4 Pressure in a tube with two 
liquids (cont.)

PREPARE Following the steps in 

Tactics Box 13.1, we start by 

drawing the picture shown in 

FIGURE 13.12. We know that the 

pressure at the open surface of the 

oil is p0 = 1 atm. Pressures p1 and 

p2 are the same because they are on 

a horizontal line that connects two 

points in the same fluid. (The pressure at point A is not 

equal to p3, even though point A and the closed end are on 

the same horizontal line, because the two points are in 

different fluids.)
© 2015 Pearson Education, Inc.
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Example 13.4 Pressure in a tube with two 
liquids (cont.)

We can apply the hydrostatic 

pressure equation twice: once 

to find the pressure p1 by its 

known depth below the open end 

at pressure p0, and again to find 

the pressure p3 at the closed end 

once we know p2 a distance d

below it. We’ll need the densities 

of water and oil, which are found in 

Table 13.1 to be ρw = 1000 kg/m3 and ρo = 900 kg/m3.

© 2015 Pearson Education, Inc.
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Example 13.4 Pressure in a tube with two 
liquids (cont.)

SOLVE The pressure at point 1, 

75 cm below the open end, is

p1 = p0 + ρogh

= 1 atm + (900 kg/m3)(9.8 m/s2)(0.75 m)

= 1 atm + 6620 Pa

(We will keep p0 = 1 atm separate in this result because 

we’ll eventually need to subtract exactly 1 atm to calculate 

the gauge pressure.)

© 2015 Pearson Education, Inc.
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Example 13.4 Pressure in a tube with two 
liquids (cont.)

We can also use the hydrostatic 

pressure equation to find

p2 = p3 + ρwgd

= p3 + (1000 kg/m3)(9.8 m/s2)(0.25 m)

= p3 + 2450 Pa

© 2015 Pearson Education, Inc.
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Example 13.4 Pressure in a tube with two 
liquids (cont.)

But we know that p2 = p1, so

p3 = p2  2450 Pa = p1  2450 Pa

= 1 atm + 6620 Pa  2450 Pa

= 1 atm + 4200 Pa

The gauge pressure at point 3, the closed 

end of the tube, is p3  1 atm or 4200 Pa.

© 2015 Pearson Education, Inc.
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Example 13.4 Pressure in a tube with two 
liquids (cont.)

ASSESS The oil’s open surface 

is 50 cm higher than the water’s 

closed surface. Their densities 

are not too different, so we 

expect a pressure difference of 

roughly ρg(0.50 m) = 5000 Pa. 

This is not too far from our 

answer, giving us confidence 

that it’s correct.

© 2015 Pearson Education, Inc.
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Pressure Units

© 2015 Pearson Education, Inc.
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Blood Pressure

• Blood pressure is measured by 

pressurizing a cuff around a 

patient’s arm. 

• The cuff squeezes the artery 

shut. When the cuff pressure 

drops below the systolic (max) 

blood pressure, the artery 

pushes blood through in pulses, 

which can be heard through a 

stethoscope.

• When the cuff pressure drops 

below the diastolic pressure, 

blood flows smoothly.

© 2015 Pearson Education, Inc.
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Blood Pressure

• When a doctor or nurse 

gives you your blood 

pressure, the first number is 

the systolic blood pressure 

and the second number is 

the diastolic pressure.

© 2015 Pearson Education, Inc.
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Conceptual Example 13.5

In Figure 13.14, the patient’s 

arm is held at about the same 

height as her heart. Why?

© 2015 Pearson Education, Inc.
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Conceptual Example 13.5

REASON The hydrostatic pressure

of a fluid varies with height. 

Although flowing blood is not 

in hydrostatic equilibrium, it is 

still true that blood pressure 

increases with the distance below 

the heart and decreases above it. Because the upper arm 

when held beside the body is at the same height as the heart, 

the pressure here is the same as the pressure at the heart. If 

the patient held her arm straight up, the pressure cuff would 

be a distance d ≈ 25 cm above her heart and the pressure 

would be less than the pressure at the heart by 

Δp = ρblood gd ≈ 20 mm Hg.
© 2015 Pearson Education, Inc.
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Conceptual Example 13.5

ASSESS 20 mm Hg is a 

substantial fraction of the 

average blood pressure. 

Measuring pressure above or 

below heart level could lead to a 

misdiagnosis of the patient’s 

condition.

© 2015 Pearson Education, Inc.



Section 13.4 Buoyancy

© 2015 Pearson Education, Inc.



Slide 13-60

Buoyancy

• Buoyancy is the upward force 

of a liquid.

• The pressure in a liquid 

increases with depth, so the 

pressure in a liquid-filled 

cylinder is greater at the 

bottom than at the top.

• The pressure exerts a net 

upward force on a submerged 

cylinder of 

Fnet = Fup – Fdown

© 2015 Pearson Education, Inc.
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Buoyancy

• If an isolated parcel of a fluid is in static equilibrium, then the parcel’s 

weight force pulling it down must be balanced by an upward force: the 

buoyant force 

• The buoyant force matches the fluid weight: FB = w.

• If we replace the parcel of liquid with an object of the same shape and 

size, the buoyant force on the new object is exactly the same as before.

© 2015 Pearson Education, Inc.
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Buoyancy 

• When an object is immersed in a fluid, it displaces the 

fluid that would otherwise fill that region of space. The 

fluid is called the displaced fluid:

• Archimedes’ principle in equation form is

FB = ρfVf g

© 2015 Pearson Education, Inc.
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QuickCheck 13.4

A heavy lead block and a light aluminum block of equal 

sizes are both submerged in water. Upon which is the 

buoyant force greater?

A. On the lead block

B. On the aluminum block

C. They both experience the same buoyant force.

© 2015 Pearson Education, Inc.



Slide 13-64

QuickCheck 13.4

A heavy lead block and a light aluminum block of equal 

sizes are both submerged in water. Upon which is the 

buoyant force greater?

A. On the lead block

B. On the aluminum block

C. They both experience the same buoyant force.

© 2015 Pearson Education, Inc.
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QuickCheck 13.5

Two blocks are of identical size. One is made of lead and 

sits on the bottom of a pond; the other is of wood and floats 

on top. Upon which is the buoyant force greater?

A. On the lead block

B. On the wood block

C. They both experience the same buoyant force

© 2015 Pearson Education, Inc.
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QuickCheck 13.5

Two blocks are of identical size. One is made of lead and 

sits on the bottom of a pond; the other is of wood and floats 

on top. Upon which is the buoyant force greater?

A. On the lead block

B. On the wood block

C. They both experience the same buoyant force

© 2015 Pearson Education, Inc.
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QuickCheck 13.6

A barge filled with ore floats in a canal lock. If the ore is 

tossed overboard into the lock, the water level in the lock 

will

A. Rise.

B. Fall.

C. Remain constant.

© 2015 Pearson Education, Inc.
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QuickCheck 13.6

A barge filled with ore floats in a canal lock. If the ore is 

tossed overboard into the lock, the water level in the lock 

will

A. Rise.

B. Fall.

C. Remain constant.
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Example 13.6 Is the crown gold?

Legend has it that 

Archimedes was asked 

by King Hiero of 

Syracuse to determine 

whether a crown was of 

pure gold or had been 

adulterated with a lesser metal by an unscrupulous 

goldsmith. It was this problem that led him to the principle 

that bears his name. In a modern version of his method, a 

crown weighing 8.30 N is suspended underwater from a 

string. The tension in the string is measured to be 7.81 N. Is 

the crown pure gold?

© 2015 Pearson Education, Inc.



Slide 13-70

Example 13.6 Is the crown gold? (cont.)

PREPARE To discover 

whether the crown is 

pure gold, we need to 

determine its density 

ρo and compare it to the 

known density of gold. 

FIGURE 13.17 shows the forces acting on the crown. In 

addition to the familiar tension and weight forces, the water 

exerts an upward buoyant force on the crown. The size of 

the buoyant force is given by Archimedes’ principle.

© 2015 Pearson Education, Inc.
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Example 13.6 Is the crown gold? (cont.)

SOLVE Because the crown is in static equilibrium, its 

acceleration and the net 

force on it are zero.

Newton’s second law 

then reads

Fy = FB + T  wo = 0

from which the buoyant force is

FB = wo  T = 8.30 N  7.81 N = 0.49 N

© 2015 Pearson Education, Inc.
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Example 13.6 Is the crown gold? (cont.)

According to Archimedes’

principle, FB = ρfVf g, 

where Vf is the volume 

of the fluid displaced. 

Here, where the crown is 

completely submerged, 

the volume of the fluid displaced is equal to the volume Vo

of the crown. Now the crown’s weight is wo = mog = ρoVog, 

so its volume is

© 2015 Pearson Education, Inc.
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Example 13.6 Is the crown gold? (cont.)

Inserting this volume into Archimedes’ principle gives

or, solving for ρo,

© 2015 Pearson Education, Inc.
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Example 13.6 Is the crown gold? (cont.)

The crown’s density is 

considerably lower than 

that of pure gold, which 

is 19,300 kg/m3. The

crown is not pure gold.

ASSESS For an object 

made of a dense material such as gold, the buoyant force is 

small compared to its weight.

© 2015 Pearson Education, Inc.
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Float or Sink?

• Whether an object released underwater will head to the 

surface or to the bottom depends on whether the upward 

buoyant force on the object is larger or smaller than the 

downward weight force.

• Some objects are not uniform. We therefore define the 

average density to be ρavg = mo/Vo. The weight of a 

compound object can be written as wo = ρavgVog. 

© 2015 Pearson Education, Inc.
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Float or Sink?

• An object will float or sink 

depending on whether the 

fluid density is larger or 

smaller than the object’s 

average density. 

• If the densities are equal, the 

object is in static equilibrium 

and hangs motionless. This is 

called neutral buoyancy. 

© 2015 Pearson Education, Inc.
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Float or Sink?

© 2015 Pearson Education, Inc.

Text: p. 410
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QuickCheck 13.7

Which floating block is most dense?

A. Block a

B. Block b

C. Block c

D. Blocks a and b are tied.

E. Blocks b and c are tied.

© 2015 Pearson Education, Inc.
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QuickCheck 13.7

Which floating block is most dense?

A. Block a

B. Block b

C. Block c

D. Blocks a and b are tied.

E. Blocks b and c are tied.
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Example 13.8 Measuring the density of an 
unknown liquid

You need to determine the density of an unknown liquid. 

You notice that a block floats in this liquid with 4.6 cm of 

the side of the block submerged. When the block is placed 

in water, it also floats but with 5.8 cm submerged. What is 

the density of the unknown liquid?

© 2015 Pearson Education, Inc.
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Example 13.8 Measuring the density of an 
unknown liquid (cont.)

PREPARE Assume that the block is an object of uniform 

composition. FIGURE 13.19 shows the block as well as the 

cross-section area A and submerged lengths hu in the 

unknown liquid and hw in water.

© 2015 Pearson Education, Inc.
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Example 13.8 Measuring the density of an 
unknown liquid (cont.)

SOLVE The block is floating, so Equation 13.10 applies. The 

block displaces volume Vu = Ahu of the unknown liquid. 

Thus

Similarly, the block displaces volume Vw = Ahw of the water, 

leading to

© 2015 Pearson Education, Inc.
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Example 13.8 Measuring the density of an 
unknown liquid (cont.)

Because there are two fluids, we’ve used subscripts w for water 

and u for the unknown in place of the fluid subscript f. The 

product ρoVo appears in both equations. In the first ρoVo = ρu Ahu, 

and in the second ρoVo = ρw Ahw. Equating the right-hand sides 

gives

ρuAhu = ρw Ahw

© 2015 Pearson Education, Inc.



Slide 13-84

Example 13.8 Measuring the density of an 
unknown liquid (cont.)

The area A cancels, and the density of the unknown liquid is

ASSESS Comparison with Table 13.1 shows that the 

unknown liquid is likely to be glycerin.

© 2015 Pearson Education, Inc.
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Boats and Balloons

• The hull of a boat is really a 

hollow shell, so the volume 

of water displaced by the 

shell is much larger than the 

volume of the hull itself.

• The boat sinks until the 

weight of the displaced 

water exactly matches the 

boat’s weight. It is then in 

static equilibrium and floats.

© 2015 Pearson Education, Inc.
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Boats and Balloons

• The density of air is low so 

the buoyant force is generally 

negligible. 

• Balloons cannot be filled with 

regular air because it would 

weigh the same amount as the 

displaced air and therefore 

have no net upward force.

• For a balloon to float, it must be filled with a gas that has a 

lower density than that of air.

© 2015 Pearson Education, Inc.
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QuickCheck 13.8

Blocks a, b, and c are all the 

same size. Which experiences 

the largest buoyant force?

A. Block a

B. Block b

C. Block c

D. All have the same 

buoyant force.

E. Blocks a and c have the same buoyant force, but the 

buoyant force on block b is different.

© 2015 Pearson Education, Inc.
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QuickCheck 13.8

Blocks a, b, and c are all the 

same size. Which experiences 

the largest buoyant force?

A. Block a

B. Block b

C. Block c

D. All have the same 

buoyant force.

E. Blocks a and c have the same buoyant force, but the 

buoyant force on block b is different.
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QuickCheck 13.9

Blocks a, b, and c are all the same size. Which is the correct 

order of the scale readings?

A. a = b = c

B. c > a = b

C. c > a > b

D. b > c > a

E. a = c > b

© 2015 Pearson Education, Inc.
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QuickCheck 13.9

Blocks a, b, and c are all the same size. Which is the correct 
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A. a = b = c

B. c > a = b
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E. a = c > b
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Example Problem

The envelope of a typical hot air balloon has a volume of 

2500 m3. Assume that such a balloon is flying in Fort 

Collins, Colorado, where the density of air is approximately 

1.0 kg/m3.

A. What mass of air does the balloon displace?

B. If heated to the maximum temperature, the air inside the 

balloon has a density of about 80% that of the 

surrounding air. What is the mass of air in the balloon?

C. How much mass can the balloon lift?
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Fluids in Motion

For fluid dynamics we use a simplified model of an ideal fluid. We assume

1. The fluid is incompressible. This is a very good assumption for liquids, 

but it also holds reasonably well for a moving gas, such as air. For 

instance, even when a 100 mph wind slams into a wall, its density 

changes by only about 1%.

2. The flow is steady. That is, the fluid velocity at each point in the fluid is 

constant; it does not fluctuate or change with time. Flow under these 

conditions is called laminar flow, and it is distinguished from turbulent 

flow.

3. The fluid is nonviscous. Water flows much more easily than cold 

pancake syrup because the syrup is a very viscous liquid. Viscosity is 

resistance to flow, and assuming a fluid is nonviscous is analogous to 

assuming the motion of a particle is frictionless. Gases have very low 

viscosity, and even many liquids are well approximated as being 

nonviscous.
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Fluids in Motion

• The rising smoke begins as laminar 

flow, recognizable by the smooth 

contours.

• At some point, the smoke undergoes 

a transition to turbulent flow.

• A laminar-to-turbulent transition is 

not uncommon in fluid flow.

• Our model of fluids can only be 

applied to laminar flow.
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The Equation of Continuity

• When an incompressible 

fluid enters a tube, an equal 

volume of the fluid must 

leave the tube.

• The velocity of the molecules 

will change with different 

cross-section areas of the tube. 

ΔV1 = A1 Δx1 = A1 v1 Δt = ΔV2 = A2 Δx2 = A2 v2 Δt
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The Equation of Continuity

• Dividing both sides of the previous equation by Δt gives 

the equation of continuity:

• The volume of an incompressible fluid entering one 

part of a tube or pipe must be matched by an equal 

volume leaving downstream.

• A consequence of the equation of continuity is that flow is 

faster in narrower parts of a tube, slower in wider 

parts.
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The Equation of Continuity

• The rate at which fluid 

flows through a tube 

(volume per second) is 

called the volume flow rate

Q. The SI units of Q are 

m3/s.

• Another way to express the 

meaning of the equation of 

continuity is to say that the 

volume flow rate is 

constant at all points in 

the tube.
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QuickCheck 13.10

Water flows from left to right through this pipe. What can 

you say about the speed of the water at points 1 and 2?

A. v1 > v2

B. v1 = v2

C. v1< v2
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QuickCheck 13.10

Water flows from left to right through this pipe. What can 

you say about the speed of the water at points 1 and 2?

A. v1 > v2

B. v1 = v2

C. v1< v2
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Example 13.10 Speed of water through a hose

A garden hose has an inside diameter of 16 mm. The hose 

can fill a 10 L bucket in 20 s.

a. What is the speed of the water out of the end of the 

hose?

b. What diameter nozzle would cause the water to exit with 

a speed 4 times greater than the speed inside the hose?

PREPARE Water is essentially incompressible, so the 

equation of continuity applies.
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Example 13.10 Speed of water through a hose 
(cont.)

SOLVE

a. The volume flow rate is Q = ΔV/Δt = (10 L)/(20 s) = 

0.50 L/s. To convert this to SI units, recall that 1 L = 

1000 mL = 103 cm3 = 103 m3. Thus Q = 5.0  104 m3/s. 

We can find the speed of the water from Equation 13.13:

© 2015 Pearson Education, Inc.



Slide 13-102

Example 13.10 Speed of water through a hose 
(cont.)

SOLVE

b. The quantity Q = vA remains constant as the water flows 

through the hose and then the nozzle. To increase v by a 

factor of 4, A must be reduced by a factor of 4. The 

cross-section area depends on the square of the diameter, 

so the area is reduced by a factor of 4 if the diameter is 

reduced by a factor of 2. Thus the necessary nozzle 

diameter is 8 mm.
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QuickCheck 13.11

Gas flows from left to right through this pipe, whose 

interior is hidden. At which point does the pipe have the 

smallest inner diameter?

A. Point a

B. Point b

C. Point c

D. The diameter doesn’t change.

E. Not enough information to tell.
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QuickCheck 13.11

Gas flows from left to right through this pipe, whose 

interior is hidden. At which point does the pipe have the 

smallest inner diameter?

A. Point a

B. Point b

C. Point c

D. The diameter doesn’t change.

E. Not enough information to tell.
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Representing Fluid Flow: Streamlines and Fluid 
Elements

• A streamline is the path or 

trajectory followed by a 

“particle of fluid”. 
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Representing Fluid Flow: Streamlines and Fluid 
Elements

• A fluid element is a small 

volume of a fluid, a 

volume containing many 

particles of fluid.

• A fluid element has a 

shape and volume. The 

shape can change, but the 

volume is constant.
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Fluid Dynamics

• A fluid element changes 

velocity as it moves from 

the wider part of a tube to 

the narrower part. 

• This acceleration of the 

fluid element must be 

caused by a force.

• The fluid element is pushed from both ends by the 

surrounding fluid, that is, by pressure forces.
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Fluid Dynamics

• To accelerate the fluid 

element, the pressure must 

be higher in the wider part 

of the tube.

• A pressure gradient is a 

region where there is a 

change in pressure from one 

point in the fluid to another.

• An ideal fluid accelerates 

whenever there is a 

pressure gradient.
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Fluid Dynamics

• The pressure is higher 

at a point along a stream

line where the fluid is 

moving slower, lower 

where the fluid is 

moving faster.

• This property of fluids 

was discovered by Daniel 

Bernoulli and is called the Bernoulli effect.

• The speed of a fluid can be measured by a Venturi tube.
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Applications of the Bernoulli Effect

• As air moves over a hill, the 

streamlines bunch together, 

so that the air speeds up. 

This means there must exist 

a zone of low pressure at the 

crest of the hill.
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Applications of the Bernoulli Effect

• Lift is the upward force on the 

wing of an airplane that 

makes flight possible.

• The wing is designed such 

that above the wing the air 

speed increases and the 

pressure is low. Below the 

wing, the air is slower and the 

pressure is high.

• The high pressure below the 

wing pushes more strongly 

than the low pressure from 

above, causing lift.
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Applications of the Bernoulli Effect

• In a hurricane, roofs are 

“lifted” off a house by 

pressure differences.

• The pressure differences are 

small but the force is 

proportional to the area of 

the roof.
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Try It Yourself: Blowing Up

Try the experiment in the figure. You might expect the strip 

to be pushed down by the force of your breath, but you’ll 

find that the strip actually rises.

Your breath moving over the 

curved strip is similar to 

wind blowing over a hill, 

and Bernoulli’s effect 

likewise predicts a zone of 

lower pressure above the 

strip that causes it to rise.
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Bernoulli’s Equation

• We can find a numerical 

relationship for pressure, height 

and speed of a fluid by applying 

conservation of energy:

ΔK + ΔU = W

• As a fluid moves through a tube 

of varying widths, parts of a 

segment of fluid will lose 

energy that the other parts of 

the fluid will gain.
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Bernoulli’s Equation

• The system moves out of 

cylindrical volume V1 and into 

V2. The kinetic energies are

• The net change in kinetic 

energy is

© 2015 Pearson Education, Inc.



Slide 13-117

Bernoulli’s Equation

• The net change in gravitational 

potential energy is

ΔU = U2  U1 = ρ ΔVgy2  ρ ΔVgy1

• The positive and negative work 

done are

W1 = F1 Δx1 = (p1 A1) Δx1

= p1 (A1 Δx1) = p1 ΔV

W2 = F2 Δx2 = ( p2 A2) Δx2

= p2 (A2 Δx2) = p2 ΔV
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Bernoulli’s Equation

• The net work done on the system is:

W = W1 + W2 = p1 ΔV  p 2 ΔV = (p1  p 2) ΔV

• We combine the equations for kinetic energy, potential energy, 

and work done:

• Rearranged, this equation is Bernoulli’s equation, which 

relates ideal-fluid quantities at two points along a streamline:
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Example 13.12 Pressure in an irrigation system

Water flows through the pipes 

shown in FIGURE 13.35. The

water’s speed through the 

lower pipe is 5.0 m/s, and a 

pressure gauge reads 75 kPa. 

What is the reading of the 

pressure gauge on the upper 

pipe?

PREPARE Treat the water as an ideal fluid obeying 

Bernoulli’s equation. Consider a streamline connecting 

point 1 in the lower pipe with point 2 in the upper pipe.
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Example 13.12 Pressure in an irrigation system 
(cont.)

SOLVE Bernoulli’s equation, 

Equation 13.14, relates the 

pressures, fluid speeds, and 

heights at points 1 and 2. It is 

easily solved for the pressure 

p2 at point 2:
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Example 13.12 Pressure in an irrigation system 
(cont.)

All quantities on the right are 

known except v2, and that is 

where the equation of 

continuity will be useful. 

The cross-section areas and 

water speeds at points 1 and 

2 are related by

v1 A1 = v2 A2

from which we find
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Example 13.12 Pressure in an irrigation system 
(cont.)

The pressure at point 1 is 

p1 = 75 kPa + 1 atm = 176,300 Pa. 

We can now use the above 

expression for p2 to calculate 

p2 = 105,900 Pa. This is the 

absolute pressure; the pressure 

gauge on the upper pipe will read

p2 = 105,900 Pa  1 atm = 4.6 kPa

ASSESS Reducing the pipe size decreases the pressure 

because it makes v2  v1. Gaining elevation also reduces the 

pressure.
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Viscosity and Poiseuille’s Equation

• Viscosity is the measure of a 

fluid’s resistance to flow.

• A very viscous fluid flows 

slowly when poured.

• Real fluids (viscous fluids) 

require a pressure difference

in order to flow at a constant 

speed.
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Viscosity and Poiseuille’s Equation

• The pressure difference needed to keep a fluid moving is 

proportional to vavg and to the tube length L, and inversely 

proportional to cross-section area A.

• η is the coefficient of viscosity. The units are N  s/m2 or 

Pa s.
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Viscosity and Poiseuille’s Equation

The viscosity of many liquids decreases very rapidly with 

temperature.
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Poiseuille’s Equation

• In an ideal fluid, all fluid particles move with the same 

speed. 

• For a viscous fluid, the fluid moves fastest in the center of 

the tube. The speed decreases as you move away from the 

center towards the walls of the tube, where speed is 0.
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Poiseuille’s Equation

• The average speed of a viscous fluid is

• The volume flow rate for a viscous fluid is

• The viscous flow rate equation is called the Poiseuille’s

Equation after the person who first performed this 

calculation.
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Example 13.14 Pressure drop along a capillary

In Example 13.11 we examined blood flow through a 

capillary. Using the numbers from that example, calculate 

the pressure “drop” from one end of a capillary to the other.

PREPARE Example 13.11 gives enough information to 

determine the flow rate through a capillary. We can then use 

Poiseuille’s equation to calculate the pressure difference 

between the ends.
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Example 13.14 Pressure drop along a capillary 
(cont.)

SOLVE The measured volume flow rate leaving the heart 

was given as 5 L/min = 8.3  105 m3/s. This flow is 

divided among all the capillaries, which we found to 

number N = 3  109. Thus the flow rate through each 

capillary is
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Example 13.14 Pressure drop along a capillary 
(cont.)

Solving Poiseuille’s equation for Δp, we get

If we convert to mm of mercury, the units of blood pressure, 

the pressure drop across the capillary is Δp = 16 mm Hg.
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Example 13.14 Pressure drop along a capillary 
(cont.)

ASSESS The average blood pressure provided by the heart 

(the average of the systolic and diastolic pressures) is about 

100 mm Hg. A physiology textbook will tell you that the 

pressure has decreased to 35 mm by the time blood enters 

the capillaries, and it exits from capillaries into the veins at 

17 mm. Thus the pressure drop across the capillaries is 18 

mm Hg. Our calculation, based on the laws of fluid flow 

and some simple estimates of capillary size, is in almost 

perfect agreement with measured values.
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Summary: General Principles
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Summary: General Principles
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Summary: Important Concepts
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Summary: Important Concepts
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Summary: Applications
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Summary: Applications
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Summary
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