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Suggested Videos for Chapter 3

* Prelecture Videos
* Vectors and Motion
* Projectile Motion
* Circular Motion

* Class Videos
« Motion on a Ramp
« Acceleration Due to
Changing Direction
* Video Tutor Solutions

* \ectors and Motion in Two
Dimensions
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* Video Tutor Demos

Balls Take High and Low
Tracks

Dropped and Thrown Balls

Ball Fired Upward from
Moving Cart

Ball Fired Upward from
Accelerating Cart

Ball Fired from Cart on
Incline

Range of a Gun at Two
Firing Angles
Ball Leaves Circular Track
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Suggested Simulations for Chapter 3

* ActivPhysics
« 3.1-3.7
4.1

* PhETs
* Vector Addition
 Ladybug Motion 2D
* Maze Game
* Motion in 2D
* Projectile Motion
 Ladybug Revolution
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Chapter 3 Vectors and Motion in Two
Dimensions

Chapter Goal: To learn more about vectors and to use
vectors as a tool to analyze motion in two dimensions.
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Chapter 3 Preview
Looking Ahead: Vectors and Components

* The dark green vector 1s the ball’s initial velocity. The
light green component vectors show initial horizontal and
vertical velocity. |

* You’ll learn to describe motion in terms of quantities such

as distance and velocity, an important first step in
analyzing motion.
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Chapter 3 Preview
Looking Ahead: Projectile Motion

* A leaping fish’s parabolic arc 1s an example of projectile
motion. The details are the same for a fish or a basketball.

+ You’ll see how to solve proj ectile motion problems,
determining how long an object is in the air and how far it
travels.
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Chapter 3 Preview
Looking Ahead: Circular Motion

* The riders move In a circle at a constant speed, but they
have an acceleration because the direction is constantly
changing.

* You’ll learn how to determine the magnitude and the
direction of the acceleration for an object in circular
motion.

© 2015 Pearson Education, Inc. Slide 3-7



Chapter 3 Preview
Looking Ahead

Vectors and Components Projectile Motion Circular Motion

The dark green vector is the ball’s initial A leaping fish’s parabolic arc is an example of The riders move in a circle at a constant speed, but
velocity. The light green component vectors projectile motion. The details are the same fora  they have an acceleration because the direction is
show initial horizontal and vertical velocity. fish or a basketball. constantly changing.

You'll learn how to find components of You’ll see how to solve projectile motion You'll learn how to determine the magnitude
vectors and how to use these components problems, determining how long an object is and the direction of the acceleration for an
to solve problems. in the air and how far it travels. object in circular motion.

Text: p. 64
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Chapter 3 Preview
Looking Back: Free Fall

* You learned in Section 2.7 that an
object tossed straight up is in free
fall. The acceleration is the same
whether the object Is going up or
coming back down.

S
QU

* For an object in projectile motion,
the vertical component of the
motion 1S also free fall. You’ll
use your knowledge of free fall to
solve projectile motion problems.
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Chapter 3 Preview
Stop to Think

A player kicks a football straight up into the air. The ball
takes 2.0 s to reach its highest point. Approximately how
fast was the ball moving when it left the player’s foot?

A. 5m/s
B. 10 m/s
C. 15m/s
D. 20 m/s

© 2015 Pearson Education, Inc. Slide 3-10



Reading Question 3.1

The of a vector iIs always a positive quantity.

X-component
y-component
Magnitude
Direction

O Om>r
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Reading Question 3.1

The of a vector iIs always a positive quantity.

A. X-component
B. y-component
¢/ C. Magnitude

D

Direction
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Reading Question 3.2

A, is positive if A_ is directed A is positive if
A, Is directed

Right, up
_eft, up
Right, down
Left, down

OOl >
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Reading Question 3.2

A, is positive if A__is directed
A, Is directed

v Right, up
_eft, up
Right, down

Left, down

OO m>
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, A Is positive If
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Reading Question 3.3

The acceleration of a cart rolling down a ramp depends on

The angle of the ramp.
The length of the ramp.

Both the angle of the ramp and the length of the ramp.
Neither the angle of the ramp or the length of the ramp.

O Om>r
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Reading Question 3.3

The acceleration of a cart rolling down a ramp depends on

¢/ A. The angle of the ramp.
B. The length of the ramp.

C. Both the angle of the ramp and the length of the ramp.
D. Neither the angle of the ramp or the length of the ramp.
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Reading Question 3.4

The acceleration vector of a particle in projectile motion

A. Points along the path of the particle.

B. Is directed horizontally.

C. Vanishes at the particle’s highest point.
D. Is directed down at all times.

E. Is zero.
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Reading Question 3.4

The acceleration vector of a particle in projectile motion

A. Points along the path of the particle.
B. Is directed horizontally.

C. Vanishes at the particle’s highest point.
¢/ D. Isdirected down at all times.
E. Is zero.
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Reading Question 3.5

The acceleration vector of a particle in uniform circular
motion

A. Points tangent to the circle, in the direction of motion.
B

. Points tangent to the circle, opposite the direction of
motion.

S Zero.
Points toward the center of the circle.
Points outward from the center of the circle.

O O

m
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Reading Question 3.5

The acceleration vector of a particle in uniform circular
motion

Points tangent to the circle, in the direction of motion.

Points tangent to the circle, opposite the direction of
motion.

C. Is zero.
¢/ D. Points toward the center of the circle.
E. Points outward from the center of the circle.

w >
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Section 3.1 Using Vectors



Using Vectors
* A vector Is a quantity with both a size (magnitude) and
a direction.

* Figure 3.1 shows how to represent a particle’s velocity
as a vector v.

* The particle’s speed at this Magnitude  Direction
point is 5 m/s and it is moving  of vector Of/vector
In the direction indicated by / Q8
the arrow. /2> 7

T},/Name of vector
The vector represents
the particle’s velocity
at this one point.

‘e
e
L
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Using Vectors

* The magnitude of a vector Is represented by the letter

without an arrow.

* In this case, the particle’s speed—the magnitude of the

velocity vector v—isv =5 m/s.

 The magnitude of a vector,
a scalar quantity, cannot be

a negative number.

© 2015 Pearson Education, Inc.

Magnitude Direction
of vector of vector
.
// 5 o /

V

T),/Name of vector
The vector represents
the particle’s velocity
at this one point.

‘e
e
L
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Using Vectors

* The displacement vector Is a straight-line connection from
the initial position to the final position, regardless of the

actual path.

» Two vectors are equal If they have the same magnitude

and direction. This Is
regardless of the individual

starting points of the vectors.

© 2015 Pearson Education, Inc.

(b)

Becky’s
house

\

\

v
.Q
"
3

dg and dg have the
same magnitude and
+ direction, so dg = ds.

Sam’s
house
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Vector Addition

» C is the net displacement because it describes the net
result of the hiker’s having first displacement A, then
displacement B.

» The net displacement C is an initial displacement A plus
a second displacement B:

5 T, 2 Net displacement
C=A+B \ End S
* The sum of the two vectors

is called the resultant vector. C
Vector addition Is

commutative: St Q

A+B=B+ A4 Individual
displacements

© 2015 Pearson Education, Inc. Slide 3-25
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Vector Addition

* The figure shows the tip-to-tail rule of vector addition and
the parallelogram rule of vector addition.

(a)
E
D . .
What is D + E? Tip-to-tail rule: Parallelogram rule: ;
Slide the tail of E* Find the diagonal of -
to the tip of D. the parallelogram _
formed by D and E.
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QuickCheck 3.1

Given vectors Pand O, what is P+ 0?
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QuickCheck 3.1

Given vectors Pand O, what is P+ 0?

N

vV A B C. D.
mg&
0
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Multiplication by a Scalar

« Multiplying a vector by a
positive scalar gives
another vector of different
magnitude but pointing In
the same direction.

* If we multiply a vector by
zero the product Is a vector
having zero length. The
vector Is known as the zero

vector. B points in the same

direction as A.

© 2015 Pearson Education, Inc.

The length of B is “stretched”
by the factor c; that 1s, B = cA.
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Multiplication by a Scalar

A vector cannot have a negative magnitude.

* If we multiply a vector by a negative number we reverse
Its direction.

» Multiplying a vector by —1 reverses its direction without
changing its length (magnitude).

Tail of —5 Vector —A is equal in magnitude A

attipof A but opposite in duectlon to A. /

2

/ Thus A + ( A) ==

Tip of —A returns to the starting
point. The resultant vector is O.

—3A

© 2015 Pearson Education, Inc. Slide 3-30



QuickCheck 3.2

Which of the vectors in the second row shows A + B?
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QuickCheck 3.2

Which of the vectors in the second row shows A + B?

/ s
A. B. ¢/C \ \
D. E.
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Vector Subtraction

;giﬂfi Subtracting vectors (mp ’”

To subtract B from K 2

@ Draw f_f

(2) Plgce the tail of _
—B at the tip of A.

© Draw an arrow from
the tail of A to the
tip of —B. This is
vector A — B.

Exercises 5-8
Text: p. 67 gjge 333
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QuickCheck 3.3

Given vectors Pand O, whatis P-Q?
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QuickCheck 3.3

Given vectors Pand O, whatis P-Q?

Bl
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QuickCheck 3.4

Which of the vectors in the second row shows 2A— B?

A

B

SN
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QuickCheck 3.4

Which of the vectors in the second row shows 2A— B?
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Section 3.2 Using Vectors
on Motion Diagrams



Using Vectors on Motion Diagrams

* In two dimensions, an object’s displacement 1s a vector:

, d _(d | .
v = — = | —, same direction as d
At At
Definition of velocity in two or more dimensions

* The velocity vector Is simply the displacement vector
multiplied by the scalar 1/At.

 Consequently the velocity vector points in the direction
of the displacement.
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Example 3.1 Finding the velocity of an airplane

A small plane is 100 km due east of Denver. After 1 hour of
flying at a constant speed In the same direction, it is 200 km
due north of Denver. What is the plane’s velocity?

PREPARE The Initial and final End ¢
positions of the plane are shown
In FIGURE 3.8; the displacement
d is the vector that points from
the initial to the final position. 200 km

Denver ¢« @ Start

100 km
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Example 3.1 Finding the velocity of an airplane
(cont.)

sOLVE The length of the displacement vector is the
hypotenuse of a right triangle:

d= \/(100 km)* + (200 km)* = 224 km

The direction of the displacement vector is described by the
angle @1in Figure 3.8. From trigonometry, this angle is

_1( 200 km L 5
6 = tan 100 km =tan (2.00) =634
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Example 3.1 Finding the velocity of an airplane
(cont.)

Thus the plane’s displacement vector IS

d = (224 km, 63.4° north of west)

Because the plane undergoes this displacement during
1 hour, Its velocity Is

—

N d . 224 km
V= A_’ same direction as d | = , 63.4° north of west

" l1h
= (224 km/h, 63.4° north of west)

ASSESS The plane’s speed Is the magnitude of the velocity,
v =224 km/h. This Is approximately 140 mph, which is a
reasonable speed for a small plane.
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Using Vectors on Motion Diagrams

* The vector definition of acceleration is a straightforward
extension of the one-dimensional version:
- ¥ AV

Zi: —
tr— t, At

Definition of acceleration in two or more dimensions

* There Is an acceleration whenever there Is a change In
velocity. Velocity can change in either or both of two
possible ways:

1. The magnitude can change, indicating a change in speed.
2. The direction of motion can change.
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Finding the Acceleration Vector

TACTICS
BOX 3.2

© 2015 Pearson Education, Inc.

Finding the acceleration vector

To find the acceleration between
velocity v, and velocity V:

i)
v
3
© Draw the velocity vector . .‘/'
_vi
@ Draw —V, at the tip of V;.
Vi
—7,
AV
Vi

© Draw Av =7V, — .,
This is the direction of 4.

©® Return to the original motion
diagram. Draw a vector at the
middle point in the direction of
AV; label it a. This is the average
acceleration at the midpoint
between v, and ;.

Exercises 11,12

Text: p. 69 _
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QuickCheck 3.5

A particle undergoes acceleration a while moving from
point 1 to point 2. Which of the choices shows the velocity
vector v, as the object moves away from point 2?

2 TR 2 v, 2 3 9
a - v
g
A B. C D
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QuickCheck 3.5

A particle undergoes acceleration a while moving from
point 1 to point 2. Which of the choices shows the velocity
vector v, as the object moves away from point 2?

2 TR 2 v, 2 2 2
a . v
V3
A B. Vv c D

Av =a At
v, =V, + Av
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QuickCheck 3.6

The diagram shows three points of

a motion diagram. The particle :

changes direction with no change T~
of speed. What Is the acceleration

at point 27

Ol
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QuickCheck 3.6

The diagram shows three points of
a motion diagram. The particle —p

changes direction with no change ‘\3
of speed. What Is the acceleration

at point 2? Acceleration of
changing direction

el
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Vectors and Circular Motion

* Cars on a Ferris wheel move at a constant speed but in a
continuously changing direction. They are in uniform
circular motion.

Velocity Acceleration vectors
vectors
: To find AV, we The acceleration
' subtract the velocity vector points in
at point 1 from the the same direction
, a r velocity at point 2. as Av, toward the

center of the circle.

<
2 e
-V - a

AV
This is the change
in velocity between

points | and 2.
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Section 3.3 Coordinate Systems and
Vector Components



Coordinate Systems

* A coordinate system Is an
artificially imposed grid that y
you place on a problem in
order to make quantitative
measurements.

. 90°

* We will generally use
Cartesian coordinates.

 Coordinate axes have a
positive end and a negative
end, separated by a zero at
the origin where the two
axes Cross.
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Component Vectors

* For a vector A and an
Xy-coordinate system we can
define two new vectors
parallel to the axes that we
call the component vectors

of A. :

* You can see, using the *
para”elogram rUIe that A The tv—component Thé x-component
IS the vector sum of the vector is parallel vector is parallel

to the y-axis. to the x-axis.

two component vectors:

—

A=A, +A,

© 2015 Pearson Education, Inc. Slide 3-52



Components

gf‘,?(“sc_i Determining the components of a vector (MP‘f

© The absolute value |A,| of the x-component A, is the magnitude of the
component vector A,.

® The sign of A, is positive if f_fx points in the positive x-direction, negative if
A, points in the negative x-direction.
©® The y-component A, is determined similarly.

Exercises 16-18
Text: p. 71
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Components

(a) The vector is specified by
its magnitude and direction.

K4

N
A4
d

&
L4
-
-
~
k3
-
L4

Magnitude: A

© 2015 Pearson Education, Inc.

The components are sides of a right
triangle with hypotenuse A and angle 6.
The y-component is the
opposite side of the
triangle, so we use sin 6.

I h':
LA =7 sin 6

A, =Acos 6

- b
“The x-component is the adjacent

side of the triangle, so we use cos 6.
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Components

If we know the components, we can
Y determine the magnitude and the angle.

A= \/sz + Ay2 Direction of C —__
¢ = tan”'(C,/|C,|)
I A
Y
Ax\f) = tan '(A,/A,) Cy=—Ccos ¢~
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QuickCheck 3.7

What are the x- and y-components of this vector?

mooO W >
N |
“I“w
w N
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QuickCheck 3.7

What are the x- and y-components of this vector?

v

X

mooO W >
N |
“I“w
w N
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QuickCheck 3.8

What are the x- and y-components of this vector?

y

A. 3,4 4 —

B. 4,3 .

C. -3,4 2

D. 4,-3 -
E. 3,4 435, N 234

2-

3

.
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QuickCheck 3.8

What are the x- and y-components of this vector?

y
A. 3,4 i
B. 4,3 i
C. 3,4 5=
D. 4, -3 =
v E 3,4 4324 N 254
] :
3 |
gt _N
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QuickCheck 3.9

What are the x- and y-components of vector C?

A 1 -3 ¥
B. -3, 1 =
C. 1,1

D. -4,2

E. 2,4
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QuickCheck 3.9

What are the x- and y-components of vector C?

y (cm)
A. 1 -3 5
B. 3,1
C. 1,1
./ D. 4 2
E. 2,4 '
—4
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QuickCheck 3.10

The angle @ that specifies the direction of vector C is

h

. tan1(C,/C,)
tan-*(C,/C,) *
tan-t (|C,/C,)

tan™* (|C,J/|C,])
tan—t (|C,|/|C,|)

moowr
Q)
<~
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QuickCheck 3.10

The angle @ that specifies the direction of vector C is

h

. tan1(C,/C,)
tan-*(C,/C,) *
tan-t (|C,/C,)

tan™* (|C,J/|C,])
tan—t (|C,|/|C,|)

moow>
Q)
<~
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QuickCheck 3.11

The following vector has length 4.0 units. What are the
X- and y-components?

3.5, 2.0
-2.0,3.5
~3.5,2.0
2.0,-3.5
~3.5,-2.0

moow»
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QuickCheck 3.11

The following vector has length 4.0 units. What are the
X- and y-components?

3.5, 2.0
-2.0,3.5
~3.5,2.0
2.0,-3.5
~3.5,-2.0

v

moow»
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QuickCheck 3.12

The following vector has length 4.0 units. What are the
X- and y-components?

.\.

3.5,2.0

2.0,3.5

~3.5,2.0

2.0,-3.5 |
-3.5,-2.0

moow»
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QuickCheck 3.12

The following vector has length 4.0 units. What are the
X- and y-components?

.\ 4

3.5,2.0

2.0,3.5

~3.5,2.0

2.0,-3.5 |
-3.5,-2.0

mooOwm>
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Example 3.3 Finding the components of an
acceleration vector

Find the x- and y-components of the acceleration vector a
shown in FIGURE 3.17.

-

30°\

6.0 m/s>

PREPARE It’s important to draw the vectors. Making a
sketch is crucial to setting up this problem. FIGURE 3.18
shows the original vector @ decomposed into component

vectors parallel to the axes.
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Example 3.3 Finding the components of an
acceleration vector (cont.)

SOLVE The acceleration vector a = (6.0 m/s2, 30° below the
negative x-axis) points to the left (negative x-direction) and
down (negative y-direction), so the components a, and a, are
both negative:

a, 1s negative. Y

T
|
[
[
[
|
[
|
|

ﬁ a, 1S negative.

-4
a, = —a cos 30° = —(6.0 m/s?) cos 30° = -5.2 m/s?

a, = —a sin 30° = —(6.0 m/s?) sin 30° = 3.0 m/s*
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Example 3.3 Finding the components of an
acceleration vector (cont.)

ASSESS The magnitude of the y-component is less than that
of the x-component, as seems to be the case in Figure 3.18,
a good check on our work. The units of a, and a, are the
same as the units of vector a. Notice that we had to insert
the minus signs manually by observing that the vector
points down and to the left.
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Working with Components

» We can add vectors using components.

» Let’s look at the vector sum C = A + B for the vectors
shown In FIGURE 3.19. You can see that the component
vectors of C are the sums of the component vectors of A
and B. The same is true of the components: C, = A, + B,
and C, = A, +B,.

D,=A,+B,+C,+--
Dy=A,+B,+ C,+ - -

X X
© 2015 Pearson Education, Inc. Sllde 3-71



Working with Components

F=i+w+f
 Equation 3.18 is really just a shorthand way of writing the
two simultaneous equations:

F.=n+w.+7,

Fyzny-l—wy—l—fy

* [n other words, a vector equation is interpreted as
meaning: Equate the x-components on both sides of the
equals sign, then equate the y-components. Vector notation
allows us to write these two equations in a more compact
form.
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QuickCheck 3.13

A, is the of the vector A,.

Magnitude
X-component
Direction
Size
Displacement

moow»

© 2015 Pearson Education, Inc. Slide 3-73



QuickCheck 3.13

A, is the of the vector A,.

¢’ A. Magnitude

X-component
Direction
Size
Displacement

mooOow>
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Tilted Axes

* For motion on a slope, It is often most convenient to put
the x-axis along the slope.

* When we add the y-axis, this gives us a tilted coordinate
system.

* Finding components with
tilted axes is done the same  y
way as with horizontal and } g
vertical axes. The components &
are parallel to the tilted axes 2V 24
and the angles are TN
measured from the tilted axes. * The component vectors

of C are found with
respect to the tilted axes.
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Example Problem

The following vectors have length 4.0 units. For each
vector, what 1s the component parallel to the ramp?

S
R
30°
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Example Problem

The following vectors have length 4.0 units. For each
vector, what 1s the component perpendicular to the ramp?

S
R
30°
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Section 3.4 Motion on a Ramp



Accelerated Motion on a Ramp

* A crate slides down a (a)
frictionless (1.e., smooth)
ramp tilted at angle 6.

* The crate 1S constrained to
accelerate parallel to the
surface.

* Both the acceleration and (b)
velocity vectors are parallel
to the ramp.

-
%
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Accelerated Motion on a Ramp

* We choose the coordinate
system to have the x-axis
along the ramp and the y-axis
perpendicular. All motion
will be along the x-axis.

Y This component of e fa11
accelerates the crate down

the 1ncline. o ,
This right triangle

~ relates the free-fall
% acceleration and its
s components.

(c)

» The acceleration parallel to
the ramp Is a component of \ /3 \
the free-fall acceleration the
ObjECt would have if the Same angle
ramp vanished:

a, = T gsinf
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QuickCheck 3.14

A ball rolls up the ramp, then
back down. Which is the correct
acceleration graph?
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QuickCheck 3.14

A ball rolls up the ramp, then
back down. Which is the correct
acceleration graph?

© 2015 Pearson Education, Inc. Slide 3-82



Example 3.6 Maximum possible speed for a
skier

The Willamette Pass ski area in Oregon was the site of the
1993 U.S. National Speed Skiing Competition. The skiers
started from rest and then accelerated down a stretch of the
mountain with a reasonably constant slope, aiming for the
highest possible speed at the end of this run. During this
acceleration phase, the skiers traveled 360 m while dropping
a vertical distance of 170 m. What is the fastest speed a
skier could achieve at the end of this run?
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Example 3.6 Maximum possible speed for a

skier (cont.)

PREPARE We begin with the visual overview in FIGURE
3.24. The motion diagram shows the acceleration of the
skier and the pictorial representation gives an overview of

the problem including
the dimensions of the ?\\ g
slope. As before, we
put the x-axis along
the slope.

Known

X; = Om
(vy); =0m/s
x¢ =360 m

Find

(vx)f

© 2015 Pearson Education, Inc.
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Example 3.6 Maximum possible speed for a
skier (cont.)

SOLVE The fastest possible run would be one without any
friction or air resistance, meaning the acceleration down the
slope is given by Equation 3.20. The acceleration is in the
positive x-direction, so we use the positive sign. What is the
angle in Equation 3.20? Figure 3.24 shows that the 360-m-long
slope is the hypotenuse of a triangle of height 170 m, so we use
trigonometry to find

170 m

o _170m
Y 360 m

which gives 6= sin~1(170/360) = 28°. Equation 3.20 then gives
a, =+ gsin &=(9.8 m/s?)(sin 28°) = 4.6 m/s?
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Example 3.6 Maximum possible speed for a
skier (cont.)

For linear motion with constant acceleration, we can use the
third of the kinematic equations in Synthesis 2.1:
(v,)¢ = (v,)i° + 2a, Ax. The initial velocity (v,); is zero; thus

This is the distance along the
slope, the length of the run.

)= V2a,Ax = V2(4.6 m/s2)(360 m) = 58 m/s

This Is the fastest that any skier could hope to be moving at
the end of the run. Any friction or air resistance would
decrease this speed.

© 2015 Pearson Education, Inc. Slide 3-86



Example 3.6 Maximum possible speed for a
skier (cont.)

ASSESS The final speed we calculated is 58 m/s, which Is
about 130 mph, reasonable because we expect a high speed
for this sport. In the competition noted, the actual winning
speed was 111 mph, not much slower than the result we
calculated. Obviously, efforts to minimize friction and air
resistance are working!
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Example Problem

A new ski area has opened that emphasizes the extreme
nature of the skiing possible on its slopes. Suppose an ad
intones “Free-fall skydiving Is the greatest rush you can
experience . . . but we’ll take you as close as you can get on
land. When you tip your skis down the slope of our steepest
runs, you can accelerate at up to 75% of the acceleration

you’d experience 1n free fall.” What angle slope could give
such an acceleration?
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Section 3.5 Relative Motion



Relative Motion

- Amy, Bill, and Carlos are watching a runnetr.

* The runner moves at a different velocity relative to each of
them.

5 m/s
Bill =

5 m/s
Runner

=
15 m/s
wh e

Carlos
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Relative Velocity

S m/s
Bill —> (Vx)RC — (Vx)RA + (VX)AC
»n -~
R S m/s :
unner —p : g * L ;
The “A” appears on the right of the first expression
15 m/s > and on the left of the second; when we combine
Carlos these velocities, we “cancel” the A to get (v, )rc.

Amy

* The runner’s velocity relative to Amy 1s
(Vdra =5 M/s
* The subscript “RA” means “Runner relative to Amy.”
* The velocity of Carlos relative to Amy is
(V,)ca=15 m/s
* The subscript “CA” means “Carlos relative to Amy.”
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QuickCheck 3.15

A factory conveyor beltrollsat 3 m/s. A —w
mouse sees a piece of cheese directly Q 4 mls
across the belt and heads straight for the
cheese at 4 m/s. What is the mouse’s
speed relative to the factory floor? 31"8
A. 1 m/S Top view
B. 2m/s
C. 3m/s
D. 4m/s
E.

5m/s
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QuickCheck 3.15

A factory conveyor belt rolls at 3 m/s. A
mouse sees a piece of cheese directly -
across the belt and heads straight for the
cheese at 4 m/s. What is the mouse’s

speed relative to the factory floor? l
A. 1 m/S Top view
B. 2m/s
C. 3m/s M = mouse
D. 4m/s ot el
v/ E. 5m/s

3-4-5 right triangle
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Example 3.8 Speed of a seabird

Researchers doing satellite tracking of albatrosses in the
Southern Ocean observed a bird maintaining sustained flight
speeds of 35 m/s—nearly 80 mph! This seems surprisingly fast
until you realize that this particular bird was flying with the
wind, which was moving at 23 m/s. What was the bird’s
alrspeed—its speed relative to the air? This Is a truer measure of
Its flight speed.

Known

(Vbw = 35 m/s
(Veaw = 23 m/s

Find

(Vx)ba
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Example 3.8 Speed of a seabird (cont.)

Known

(V)pw = 35 m/s
(Vo)aw = 23 m/s

Find

(Vx)ba

PREPARE FIGURE 3.27 shows the wind and the albatross
moving to the right, so all velocities will be positive. We’ve
shown the velocity (v,),,, Of the bird with respect to the water,
which is the measured flight speed, and the velocity (v,),,, of the
alr with respect to the water, which is the known wind speed. We
want to find the bird’s airspeed—the speed of the bird with
respect to the air.
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Example 3.8 Speed of a seabird (cont.)

SOLVE We’ve noted three different velocities that are
Important In the problem: (V) (Vi) aNd (v, )y, VVE can
combine these in the usual way:

(Vx) bw ~ (Vx) ba + (Vx)aw
Then, to solve for (v,),,, We can rearrange the terms:
(V)pa = (V)ow — (V) aw = 35 M/s —23 m/s = 12 m/s

ASSESS 12 m/s—about 25 mph—iIs a reasonable airspeed for
a bird. And it’s slower than the observed flight speed, which
makes sense because the bird is flying with the wind.
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Example 3.9 Finding the ground speed of an

airplane

Cleveland is approximately 300 miles east of C

nicago. A

plane leaves Chicago flying due east at 500 mph. The pilot

forgot to check the weather and doesn’t know that the wind

IS blowing to the south at 100 mph. What is the
velocity relative to the ground?

plane’s

Chica g0 I/;, . Cleveland
G-
y
- oy
V19
Known Find
D;a.=(‘500mf/), &LS/’) D}g

Vg = (100 mph, South)
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Example 3.9 Finding the ground speed of an

airplane (cont.)

PREPARE FIGURE 3.28 is
a visual overview of the
situation. We are given the
speed of the plane relative
to the air (v,,,) and the
speed of the air relative to

Chicago Vpa Cleveland
&
Vi
- ]
¢
Known Find
Vfa. (500 mph, &LS/’) D;g

Vaj (100 mph, South)

the ground (Tz’ag); the speed of the plane relative to the ground
will be the vector sum of these velocities:

—

v

pPg

= Vs T Vip

This vector sum is shown in Figure 3.28.
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Example 3.9 Finding the ground speed of an
airplane (cont.)

SOLVE The plane’s speed relative to the ground 1s the hypotenuse of
the right triangle in Figure 3.28; thus:

voe = V.2 +v,2 = V(500 mph) + (100 mph)* = 510 mph
The plane’s direction can be specified by the angle & measured from

due east:
0=t 1(100 mph) tan 1(0.20) = 11°
— an — X rE—
500 mph

The velocity of the plane relative to the ground is thus
Vpe = (510 mph, 11° south of east)

ASSESS The good news is that the wind is making the plane move a
bit faster relative to the ground. The bad news is that the wind is
making the plane move in the wrong direction!
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Example Problem

A skydiver jumps out of an airplane 1000 m directly above
his desired landing spot. He quickly reaches a steady speed,

falling through the air at 35 m/s. There Is a breeze blowing
at 7 m/s to the west.

A. At what angle with respect to vertical does he fall?

B. When he lands, what will be his displacement from his
desired landing spot?
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Section 3.6 Motion in Two Dimensions:
Projectile Motion



Motion in Two Dimensions: Projectile Motion

* Projectile motion is an extension to two dimensions of
free-fall motion.

» A projectile is an object that moves in two dimensions
under the influence of gravity and nothing else.

* As long as we can neglect air resistance, any projectile
will follow the same type of path.
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Motion in Two Dimensions: Projectile Motion

* The vertical motions of the two balls are i1dentical.

* The vertical motion of the yellow ball is not affected by
the fact that the ball is moving horizontally.

* The horizontal and vertical components of an object
undergoing projectile
motion are independent of
each other.
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QuickCheck 3.16

A heavy red ball is released o O—

from rest 2.0 m above a flat,
horizontal surface. At exactly
the same instant, a yellow ball
with the same mass is fired
horizontally at 3.0 m/s. Which
ball hits the ground first?

The red ball hits first.
The yellow ball hits first.
They hit at the same time.

Ow >
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QuickCheck 3.16

A heavy red ball is released

from rest 2.0 m above a flat, Q\A
horizontal surface. At exactly

the same instant, a yellow ball

with the same mass is fired

horizontally at 3.0 m/s. Which
ball hits the ground first?

A. The red ball hits first.
B. The yellow ball hits first.
¢/ C. They hit at the same time.
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Motion in Two Dimensions: Projectile Motion

* The vertical component of
acceleration a, for all o O
projectile motion Is just
the familiar —g of free fall,
while the horizontal AR
component a, IS zero.

--------- The acceleration
is the same at all
points.

Ql
Ql

Ground
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QuickCheck 3.17

A 100-g ball rolls off a table and lands 2.0 m from the base
of the table. A 200-g ball rolls off the same table with the
same speed. It lands at distance

1.0 m
Between 1 mand 2 m
2.0m
Between 2 mand 4 m
4.0 m

moow»
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QuickCheck 3.17

A 100-g ball rolls off a table and lands 2.0 m from the base
of the table. A 200-g ball rolls off the same table with the
same speed. It lands at distance

1.0 m
Between 1 mand 2 m
2.0m
Between 2 mand 4 m
4.0 m

S
moow>
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Analyzing Projectile Motion

y .- Vj is the initial velocity.

*%\ x

We compute components of
the 1nitial velocity as shown.

0..
LT

 The angle of the initial velocity above the horizontal (i.e.,
above the x-axis) Is the launch angle.
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Analyzing Projectile Motion

* The ball finishes its motion
moving downward at the
same speed as It started
moving upward.

* Projectile motion is made
up of two independent
motions: uniform motion at
constant velocity in the
horizontal direction and
free-fall motion in the
vertical direction.

© 2015 Pearson Education, Inc.

(b)

The vertical component
of velocity decreases by
9.8 m/s every second.
: The horizontal component
of velocity is constant
throughout the motion.

100

-
Vv

19.6 a, =—9.8 m/s per s

Velocity vectors are
shown every 1 s.
Values are in m/s. When the particle returns
to its initial height, v, is
opposite its initial value.
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Synthesis 3.1 Projectile Motion

An object 1s launched
into the air at an angle
0 to the horizontal.

‘e
e
T
by
“a
Yay
Lo
Tan,
----

(v,); = v; cos 0

Text: p. 82
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Synthesis 3.1 Projectile Motion

After launch,
the vertical
motion is free fall.

The vertical
component of the
initial velocity is the
initial velocity for
the vertical motion.

Rising or falling, the
acceleration 1s the

© 2015 Pearson Education, Inc.

@
4@

QU

‘0
"
.

.
.
s®

s
a®
a®
a®
n®

same, d, = —g. c.cemee""

Rising Falling

Text: p. 82
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Synthesis 3.1 Projectile Motion

After launch, the horizontal motion is uniform motion.

The horizontal component of the initial velocity

1s the initial velocity for the horizontal motion. ,
------------ The acceleration

1S Zero.

L
&

i
(vx)i a=10
Text: p. 82
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Synthesis 3.1 Projectile Motion

The kinematic equations for projectile motion are those for constant-
acceleration motion vertically and constant-velocity horizontally:

The vertical motion The free fall The horizontal motion
is free fall. acceleration, 1S uniform motion.
.......................... =08 m/SZ
et e
(Ve = (vy); —g At 5t (v,)s = (v,); = constant
= 1 3
Ye= Vit (Vy)i At — Eg(ét) xXe = X;+ (v,); él

The two equations are linked by the time interval Az,
which is the same for the horizontal and vertical motion.

Text: p. 82
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Section 3.7 Projectile Motion:
Solving Problems



Projectile Motion Problems

We can solve projectile motion problems by considering the horizontal and
vertical motions as separate but related problems.

PREPARE There are a number of steps that you should go through in setting up
the solution to a projectile motion problem:

® Make simplifying assumptions. Whether the projectile is a car or a basket-
ball, the motion will be the same.

® Draw a visual overview including a pictorial representation showing the
beginning and ending points of the motion.

®m Establish a coordinate system with the x-axis horizontal and the y-axis verti-
cal. In this case, you know that the horizontal acceleration will be zero and
the vertical acceleration will be free fall: a, = 0 and a, = —g.

B Define symbols and write down a list of known values. Identify what the
problem is trying to find.

Text: p. 83
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Projectile Motion Problems

soLVvE There are two sets of kinematic equations for projectile motion, one for
the horizontal component and one for the vertical:

Horizontal Vertical
xXp=x+ (v At Ve =i + (v At — 58(Ar)?
(v = (vy); = constant (L — )¢ Al

At is the same for the horizontal and vertical components of the motion.
Find Atz by solving for the vertical or the horizontal component of the motion;
then use that value to complete the solution for the other component.

Assess Check that your result has the correct units, is reasonable, and answers

the question.

Text: p. 83
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Example 3.11 Dock jumping

In the sport of dock jumping, dogs run at full speed off the
end of a dock that sits a few feet above a pool of water. The
winning dog Is the one that lands farthest from the end of
the dock. If a dog runs at 8.5 m/s (a pretty typical speed for
this event) straight off the end of a dock that is 0.61 m (2 ft,
a standard height) above the water, how far will the dog go
before splashing down?

y Known

Xis Yis T x;=0m
(Vi ()i (vy); = 0 m/s
‘ v, =0s
yi=0.61 m,yf=0m
Xt It It ()i = v; = 8.5 m/s
0.61 m (Vo (W)e a, = 0 m/s?
a,=—g
0 x

0 Find

Xf
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Example 3.11 Dock jumping (cont.)

y Known

PREPARE We start with a oyt %=0m

visual overview of the e e
situation in FIGURE 3.33. L
We have chosen to put the nZom
origin of the coordinate Find

system at the base of the dock. :

The dog runs horizontally off the end of the dock, so the initial
components of the velocity are (v,); = 8.5 m/s and (v,); = 0 m/s.
We can treat this as a projectile motion problem, so we can use
the details and equations presented in Synthesis 3.1 above.

We know that the horizontal and vertical motions are
Independent. The fact that the dog Is falling toward the water
doesn’t affect Its horizontal motion.
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Example 3.11 Dock jumping (cont.)

y Known

When the dog leaves the ... w=om

end of the dock, it will e | (l_(;o 1“”8 ~
continue to move %:O Eﬂ%}%gm
horizontally at 8.5 m/s. ! a=

Find

The vertical motion is free .
fall. The jump ends when

the dog hits the water—that is, when it has dropped by
0.61 m. We are ultimately interested in how far the dog
goes, but to make this determination we’ll need to find the
time interval At that the dog Is In the air.
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Example 3.11 Dock jumping (cont.)

SOLVE We’ll start by solving for the time interval At, the
time the dog Is In the air. This time Is determined by the

vertical motion, which is free fall with an initial velocity
(vy); = 0 m/s. We use the vertical position equation from

Synthesis 3.1 to find the time interval:

1
e =i T (vy); At — 5 g(Ar)?

1
Om=0.61 m+ (0 m/s)Az — 5(9.8 m/s?)(At)?

Rearranging terms to solve for At, we find that
At=0.355s
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Example 3.11 Dock jumping (cont.)

This 1s how long it takes the dog’s vertical motion to reach the
water. During this time interval, the dog’s horizontal motion IS
uniform motion at the initial velocity. We can use the horizontal-
position equation with the initial speed and At = 0.35 s to find
how far the dog travels. This is the distance we are looking for:

Xp = X T (vy); At
=0m + (8.5m/s)(0.35s) =3.0m

The dog hits the water 3.0 m from the edge of the dock.

ASSESS 3.0 m is about 10 feet. This seems like a reasonable
distance for a dog running at a very fast clip off the end of a 2-
foot-high dock. Indeed, this is a typical distance for dogs in such
competitions.
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The Range of a Projectile

* The range of a projectile Is
the horizontal distance
traveled.

* For smaller objects air
resistance Is critical, and the
maximum range comes at
an angle less than 45°.

© 2015 Pearson Education, Inc.

m -
P Launch angles of 6 and
500 A 75° 90° — 6 give the same range.
400 - 4

300 A
200

100
0

i  The maximum range
s achieved at 45°.

| I | | I x(m)
\200 400 600 800 1000

v = 100 m/s

In each case the initial
speed is the same.
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QuickCheck 3.18

Projectiles 1 and 2 are launched over level ground with the
same speed but at different angles. Which hits the ground

first? Ignore air resistance.
1

Projectile 1 hits first.

Projectile 2 hits first.

They hit at the same time.

There’s not enough information to tell.

OOwrp
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QuickCheck 3.18

Projectiles 1 and 2 are launched over level ground with the
same speed but at different angles. Which hits the ground

first? Ignore air resistance.
1

Projectile 1 hits first.

Projectile 2 hits first.

They hit at the same time.

There’s not enough information to tell.

v

OOwx
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Example Problem

A grasshopper can jump a distance of 30 in (0.76 m) from a
standing start.

A. If the grasshopper takes off at the optimal angle for
maximum distance of the jump, what is the initial speed
of the jump?

B. Most animals jump at a lower angle than 45°. Suppose
the grasshopper takes off at 30° from the horizontal.
What jump speed Is necessary to reach the noted
distance?
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Section 3.8 Motion in Two Dimensions:
Circular Motion



Motion In Two Dimensions: Circular Motion

 For circular motion at a The velocity V is always tangent
to the circle and perpendicular
constant speed, the to 4 at all points.
acceleration vector a points P

toward the center of the circle.

* An acceleration that always
points directly toward the
center of a circle is called a
centripetal acceleration.

The acceleration a
always points toward
the center of the circle.

=i

* Centripetal acceleration is just
the name for a particular type
of motion. It is not a new type
of acceleration.
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QuickCheck 3.19

A car Is traveling around a curve at a
steady 45 mph. Is the car accelerating?

A. Yes
B. No
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QuickCheck 3.19

A car Is traveling around a curve at a
steady 45 mph. Is the car accelerating?

‘/ A. Yes
B. No
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QuickCheck 3.20

A
A car Is traveling around a e

curve at a steady 45 mph.
Which vector shows the

D.
direction of the car’s %
acceleration?

B. \\
.

E. The acceleration is zero.
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QuickCheck 3.20

A.
A car is traveling around a — 5
curve at a steady 45 mph.
Which vector shows the
direction of the car’s %
acceleration?
v e \ C.

E. The acceleration is zero.
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Motion In Two Dimensions: Circular Motion

(a)

As the car moves from

point 1 to point 2, the  The magnifude of the ;/elocity 1S

displacement 1s d.

© 2015 Pearson Education, Inc.

(b)

constant, but the direction changes.
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Motion In Two Dimensions: Circular Motion

(¢) The change in velocity is This triangle 1s the same
a vector pointing toward as 1n part a, but rotated.
the center of the circle. '

‘ h..
NS [ AT =73, -7,
¢:\

0..
Sy
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Motion In Two Dimensions: Circular Motion

Centripetal acceleration of object moving in a circle of radius r at speed v

© 2015 Pearson Education, Inc.

q—
a =
(r

—, toward center of circle)

1%

d = vAt

Av  vAtr
v o or
Av_ v
At r
y:
a=—
r
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QuickCheck 3.21

A toy car moves around a circular track at constant speed. It
suddenly doubles its speed — a change of a factor of 2. As a
result, the centripetal acceleration changes by a factor of

A. 1/4
B. 1/2
C. No change since the radius doesn’t change.
D. 2
E. 4
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QuickCheck 3.21

A toy car moves around a circular track at constant speed. It
suddenly doubles its speed — a change of a factor of 2. As a
result, the centripetal acceleration changes by a factor of

A. 1/4
B. 1/2

C. No change since the radius doesn’t change.
D. 2

V' E 4
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Example 3.14 Acceleration in the turn

World-class female short-track speed skaters can cover the
500 m of a race in 45 s. The most challenging elements of
the race are the turns, which are very tight, with a radius of
approximately 11 m. Estimate the magnitude of the skater’s
centripetal acceleration in a turn.
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Example 3.14 Acceleration in the turn (cont.)

PREPARE The centripetal acceleration depends on two quantities:
the radius of the turn (given as approximately 11 m) and the
speed. The speed varies during the race, but we can make a good
estimate of the speed by using the total distance and time:

500 m
T =11 m/s
45 s

SOLVE We can use these values to estimate the magnitude of the
acceleration:
vi  (llm/s)”

a=— =11 m/s
r 11 m

ASSESS This is a large acceleration—a bit more than g—but the
photo shows the skaters leaning quite hard into the turn, so such
a large acceleration seems gquite reasonable.

2
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Example Problem

Turning a corner at a typical large intersection in a city
means driving your car through a circular arc with a radius
of about 25 m. If the maximum advisable acceleration of
your vehicle through a turn on wet pavement is 0.40 times
the free-fall acceleration, what Is the maximum speed at
which you should drive through this turn?
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Summary: General Principles

Projectile Motion

A projectile is an object that The motion consists of two pieces:
moves through the air under
the influence of gravity and
nothing else.

1. Vertical motion with free-fall acceleration,
&= —2
2. Horizontal motion with constant velocity

The path of the motion is a
parabola. Kinematic equations:

* Xe =%+ (v); At
! (v = (v,); = constant
Y=Y+ (v); At — 5 8(Ar

> |
2 0 | . =) g At
(v,); = v; cosf

Text: p. 89
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Summary: General Principles

Circular Motion

An object moving in a
circle at a constant
speed has a velocity
that is constantly
changing direction,
and so experiences an
acceleration:

e The velocity 1s tangent to

o )

. Centripetal
the circular path. acceleration

e The acceleration points toward
the center of the circle and has
magnitude
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Summary: Important Concepts

Vectors and Components

A vector can be decomposed The sign of the components depends
into x- and y-components. on the direction of the vector:

y
Y Magnitude A = VA + A2

1A, >0

Direction of A > A, >0

0 =tan '(A,/A,)

The magnitude and direction of a
vector can be expressed in terms of
its components.

Text: p. 89
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Summary: Important Concepts

© 2015 Pearson Education, Inc.

The Acceleration Vector

We define the acceleration vector as

- -
Zi . Ve — V; . AT))
e — L At

We find the acceleration vector on a motion diagram

as follows:
Dots show positions at
equal time intervals.

- ®
: Vi =
Velocity vectors a
go dot to dot.
>
The acceleration A3 ”
vector points in — ki

the direction of A,

The difference in the velocity
vectors 1s found by adding
the negative of v; to Vy.

Text: P- 89 Slide 3-144



Summary: Applications

Relative motion

Velocities can be
expressed relative to an
observer. We can add
relative velocities to
convert to another

observer’s point of view.

© 2015 Pearson Education, Inc.

c = car, r = runner, g = ground

G 15 m/s
—

5 m/s
Runner =i

The speed of the car with
respect to the runner is

(Voder = (Wideg T (Vigr

Text: p. 89
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Summary: Applications

Motion on a ramp

An object sliding down a v
ramp will accelerate parallel
to the ramp:
a, = T gsinf s

The correct sign depends on
the direction in which the B
ramp is tilted. 9 /.

dy

\ )l )
Same angle
Text: p. 89
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Summary

GENERAL PRINCIPLES |

Projectile Motion Circular Motion

A projectile is an object that  The motion consists of two pieces: An object moving in a
moves through the air under circle at a constant

. . 1. Vertical motion with free-fall acceleration, .
the influence of gravity and speed has a velocity

: a,= — :
nothing else. ! & that is constantly
Th o s 2. Horizontal motion with constant velocity changing direction,
E (R GHC TOUBIESE : : e and so experiences an
parabola. Kinematic equations: secelertion:
Yy = : o
|_ 5 X=X+ (v At * The velocity is tangent to v Centripetal
Vi . .
2L i (v)f = (v,); = constant the circular path. acceleration
e ! . A1 ’ * The acceleration points toward
I | Y=yt ()i Ar = 38(A0) the center of the circle and has
s | .
= 0 . (Vy)f — (Vy)i —g At magmtude
()i = v; cosO 2
=
r

Text: p. 89
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Summary

IMPORTANT CONCEPTS

Vectors and Components

A vector can be decomposed The sign of the components depends
into x- and y-components. on the direction of the vector:

y
Y Magnitude A = VA2 + Al

/AX=Acost9

f X
Direction of A
6 =tan '(A,/A,)

The magnitude and direction of a
vector can be expressed in terms of
its components.
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The Acceleration Vector

We define the acceleration vector as

L %=V AV
(== —
=y At
We find the acceleration vector on a motion diagram
as follows:

Dots show positions at
equal time intervals.

Vi
5 ®
: Vi —
Velocity vectors / a
go dot to dot.

The accclpraln_on IS <
vector points n
the direction of Av.

The difference in the velocity
vectors is found by adding
the negative of v; to vy.

Text: p. 89

Slide 3-148



Summary

APPLICATIONS

Relative motion

Velocities can be
expressed relative to an
observer. We can add
relative velocities to
convert to another

observer’s point of view.
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¢ = car, r = runner, g = ground

TN, 15 m/s
Car - —_—

5 m/s
Runner =

The speed of the car with
respect to the runner is

(Ver = (Vedeg T (Vider

Motion on a ramp

An object sliding down a
ramp will accelerate parallel
to the ramp:

a,= T gsinf

The correct sign depends on
the direction in which the
ramp is tilted.

- “
Afree fall 9

—J -
a,
' 0
’ X

Same angle
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