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Suggested Videos for Chapter 2

• Prelecture Videos

• Motion Along a Line

• Acceleration

• Free Fall

• Class Videos

• Motion Along a Straight 

Line

• Motion with Constant 

Acceleration

• Free Fall

• Video Tutor Solutions

• Motion in One Dimension
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Suggested Simulations for Chapter 2

• ActivPhysics

• 1.1–1.14

• PhETs

• The Moving Man

• Equation Grapher
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Chapter 2 Motion in One Dimension

Chapter Goal: To describe and analyze linear motion.
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Chapter 2 Preview
Looking Ahead: Uniform Motion

• Successive images of the rider are the same distance 

apart, so the velocity is constant. This is uniform 

motion.

• You’ll learn to describe motion in terms of quantities 

such as distance and velocity, an important first step in 

analyzing motion.
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Chapter 2 Preview
Looking Ahead: Acceleration

• A cheetah is capable of very high speeds but, more 

importantly, it is capable of a rapid change in speed—

a large acceleration.

• You’ll use the concept of acceleration to solve problems of 

changing velocity, such as races, or predators chasing prey.
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Chapter 2 Preview
Looking Ahead: Free Fall

• When you toss a coin, the motion—both going up and 

coming down—is determined by gravity alone. We call 

this free fall.

• How long does it take the coin to go up and come back 

down? This is the type of free-fall problem you’ll learn to 

solve.
© 2015 Pearson Education, Inc.
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Chapter 2 Preview
Looking Ahead

© 2015 Pearson Education, Inc.
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• As you saw in Section 1.5, a good first step in analyzing 

motion is to draw a motion diagram, marking the position 

of an object in subsequent times.

• In this chapter, you’ll learn to create motion diagrams for 

different types of motion along a line. Drawing pictures 

like this is a good staring point for solving problems.

Chapter 2 Preview
Looking Back: Motion Diagrams

© 2015 Pearson Education, Inc.
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Chapter 2 Preview
Stop to Think

A bicycle is moving to the left with increasing speed. Which 

of the following motion diagrams illustrates this motion?
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Reading Question 2.1

The slope at a point on a position-versus-time graph of an 

object is the

A. Object’s speed at that point.

B. Object’s average velocity at that point.

C. Object’s instantaneous velocity at that point.

D. Object’s acceleration at that point.

E. Distance traveled by the object to that point.
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Reading Question 2.1

The slope at a point on a position-versus-time graph of an 

object is the

A. Object’s speed at that point.

B. Object’s average velocity at that point.

C. Object’s instantaneous velocity at that point.

D. Object’s acceleration at that point.

E. Distance traveled by the object to that point.
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Reading Question 2.2

Which of the following is an example of uniform motion?

A. A car going around a circular track at a constant speed.

B. A person at rest starts running in a straight line in a fixed 

direction.

C. A ball dropped from the top of a building.

D. A hockey puck sliding in a straight line at a constant 

speed.
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Reading Question 2.2

Which of the following is an example of uniform motion?

A. A car going around a circular track at a constant speed.

B. A person at rest starts running in a straight line in a fixed 

direction.

C. A ball dropped from the top of a building.

D. A hockey puck sliding in a straight line at a constant 

speed.
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Reading Question 2.3

The area under a velocity-versus-time graph of an object is

A. The object’s speed at that point.

B. The object’s acceleration at that point.

C. The distance traveled by the object.

D. The displacement of the object.

E. This topic was not covered in this chapter.
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Reading Question 2.3

The area under a velocity-versus-time graph of an object is

A. The object’s speed at that point.

B. The object’s acceleration at that point.

C. The distance traveled by the object.

D. The displacement of the object.

E. This topic was not covered in this chapter.

© 2015 Pearson Education, Inc.



Slide 2-17

Reading Question 2.4

If an object is speeding up, 

A. Its acceleration is positive.

B. Its acceleration is negative.

C. Its acceleration can be positive or negative depending on 

the direction of motion.
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Reading Question 2.4

If an object is speeding up, 

A. Its acceleration is positive.

B. Its acceleration is negative.

C. Its acceleration can be positive or negative depending on 

the direction of motion.
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Reading Question 2.5

A 1-pound ball and a 100-pound ball are dropped from a 

height of 10 feet at the same time. In the absence of air 

resistance

A. The 1-pound ball wins the race.

B. The 100-pound ball wins the race.

C. The two balls end in a tie.

D. There’s not enough information to determine which ball 

wins the race.
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Reading Question 2.5

A 1-pound ball and a 100-pound ball are dropped from a 

height of 10 feet at the same time. In the absence of air 
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Representing Position

• We will use an x-axis to analyze horizontal motion and 

motion on a ramp, with the positive end to the right.

• We will use a y-axis to analyze vertical motion, with the 

positive end up.
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Representing Position

The motion diagram of a student walking to school and a

coordinate axis for making measurements

• Every dot in the motion diagram of Figure 2.2 represents 

the student’s position at a particular time. 

• Figure 2.3 shows the 

student’s motion shows 

the student’s position as 

a graph of x versus t.
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From Position to Velocity

• On a position-versus-time 

graph, a faster speed 

corresponds to a steeper 

slope.

• The slope of an object’s 

position-versus-time 

graph is the object’s 

velocity at that point in 

the motion.
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From Position to Velocity

© 2015 Pearson Education, Inc.
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From Position to Velocity

• We can deduce the 

velocity-versus-time 

graph from the position-

versus-time graph.

• The velocity-versus-time 

graph is yet another way to 

represent an object’s 

motion.
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QuickCheck 2.2

Here is a motion diagram of a car moving along a straight road:

Which velocity-versus-time graph matches this motion diagram?

E. None of the above.
© 2015 Pearson Education, Inc.
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QuickCheck 2.2

Here is a motion diagram of a car moving along a straight road:

Which velocity-versus-time graph matches this motion diagram?

E. None of the above.
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QuickCheck 2.3

Here is a motion diagram of a car moving along a straight 
road:

Which velocity-versus-time graph matches this motion 
diagram?

© 2015 Pearson Education, Inc.
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QuickCheck 2.3

Here is a motion diagram of a car moving along a straight 
road:

Which velocity-versus-time graph matches this motion 
diagram?

© 2015 Pearson Education, Inc.
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A graph of position versus time for a basketball player 
moving down the court appears as follows:

Which of the following velocity graphs matches the position 
graph?

QuickCheck 2.4

© 2015 Pearson Education, Inc.
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A graph of position versus time for a basketball player 
moving down the court appears as follows:

Which of the following velocity graphs matches the position 
graph?

QuickCheck 2.4

© 2015 Pearson Education, Inc.
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Example 2.2 Analyzing a car’s position graph

FIGURE 2.11 gives the position-versus-time graph of a car.

a. Draw the car’s velocity-

versus-time graph.

b. Describe the car’s motion 

in words.

PREPARE Figure 2.11 is a graphical representation of the motion. 

The car’s position-versus-time graph is a sequence of three 

straight lines. Each of these straight lines represents uniform 

motion at a constant velocity. We can determine the car’s 

velocity during each interval of time by measuring the slope of 

the line.
© 2015 Pearson Education, Inc.
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Example 2.2 Analyzing a car’s position graph 
(cont.)

SOLVE

a. From t = 0 s to t = 2 s (Δt = 2 s) the car’s displacement is 

Δx = 4 m  0 m = 4 m. The velocity during this interval is

The car’s position does not change 

from t = 2 s to t = 4 s (Δx = 0 m), so 

vx = 0 m/s. Finally, the displacement 

between t = 4 s and t = 6 s (Δt = 2 s) is

Δx = 10 m. Thus the velocity during 

this interval is

These velocities are represented graphically in FIGURE 2.12.
© 2015 Pearson Education, Inc.
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Example 2.2 Analyzing a car’s position graph 
(cont.)

SOLVE

b. The velocity-versus-time graph of 

Figure 2.12 shows the motion in a 

way that we can describe in a 

straightforward manner: The car 

backs up for 2 s at 2 m/s, sits at 

rest for 2 s, then drives forward at 

5 m/s for 2 s.

ASSESS Notice that the velocity graph and the position graph look 

completely different. They should! The value of the velocity graph at any 

instant of time equals the slope of the position graph. Since the position 

graph is made up of segments of constant slope, the velocity graph should be 

made up of segments of constant value, as it is. This gives us confidence that 

the graph we have drawn is correct.

© 2015 Pearson Education, Inc.
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From Velocity to Position

• We can deduce the 

position-versus-time graph 

from the velocity-versus-

time graph.

• The sign of the velocity 

tells us whether the slope 

of the position graph is 

positive or negative.

• The magnitude of the 

velocity tells us how steep 

the slope is.

© 2015 Pearson Education, Inc.
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QuickCheck 2.1

Here is a motion diagram of a car moving along a straight 
road:

Which position-versus-time graph matches this motion 
diagram?

© 2015 Pearson Education, Inc.
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QuickCheck 2.1

Here is a motion diagram of a car moving along a straight 
road:

Which position-versus-time graph matches this motion 
diagram?

© 2015 Pearson Education, Inc.

E.



Slide 2-39

QuickCheck 2.6

A graph of velocity versus time for a hockey puck shot into a 
goal appears as follows:

Which of the following position graphs matches the velocity 
graph?

© 2015 Pearson Education, Inc.
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QuickCheck 2.6

A graph of velocity versus time for a hockey puck shot into a 
goal appears as follows:

Which of the following position graphs matches the velocity 
graph?

© 2015 Pearson Education, Inc.
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QuickCheck 2.7

Which velocity-versus-time graph 
goes with this position graph?

© 2015 Pearson Education, Inc.
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QuickCheck 2.7

Which velocity-versus-time graph 
goes with this position graph?

© 2015 Pearson Education, Inc.
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Uniform Motion

• Straight-line motion in 

which equal displacements 

occur during any 

successive equal-time 

intervals is called uniform 

motion or constant-

velocity motion.

• An object’s motion is 

uniform if and only if its 

position-versus-time 

graph is a straight line.

© 2015 Pearson Education, Inc.
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Equations of Uniform Motion

• The velocity of an object in uniform motion tells us the 

amount by which its position changes during each second.

• The displacement Δx is proportional to the time interval 

Δt.

© 2015 Pearson Education, Inc.
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Equations of Uniform Motion

© 2015 Pearson Education, Inc. Text: p. 34
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QuickCheck 2.8

Here is a position graph 
of an object:

At t = 1.5 s, the object’s 
velocity is

A. 40 m/s

B. 20 m/s

C. 10 m/s

D. –10 m/s

E. None of the above

© 2015 Pearson Education, Inc.



Slide 2-48

QuickCheck 2.8

Here is a position graph 
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Example 2.3 If a train leaves Cleveland at 
2:00…

A train is moving due west at a constant speed. A passenger 

notes that it takes 10 minutes to travel 12 km. How long will 

it take the train to travel 60 km?

PREPARE For an object in uniform motion, Equation 2.5 

shows that the distance traveled Δx is proportional to the 

time interval Δt, so this is a good problem to solve using 

ratio reasoning.

© 2015 Pearson Education, Inc.
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Example 2.3 If a train leaves Cleveland at 
2:00…(cont.)

SOLVE We are comparing two cases: the time to travel 12 

km and the time to travel 60 km. Because Δx is proportional 

to Δt, the ratio of the times will be equal to the ratio of the 

distances. The ratio of the distances is

This is equal to the ratio of the times:

It takes 10 minutes to travel 12 km, so it will take 50 

minutes—5 times as long—to travel 60 km.

© 2015 Pearson Education, Inc.
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Example Problem

A soccer player is 15 m from her opponent’s goal. She kicks 

the ball hard; after 0.50 s, it flies past a defender who stands 

5 m away, and continues toward the goal. How much time 

does the goalie have to move into position to block the kick 

from the moment the ball leaves the kicker’s foot?

© 2015 Pearson Education, Inc.
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From Velocity to Position, One More Time

• The displacement Δx is equal to the area under the 

velocity graph during the time interval Δt.

© 2015 Pearson Education, Inc.
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QuickCheck 2.11

Here is the velocity graph of an object that is at the origin 
(x  0 m) at t  0 s.

At t  4.0 s, the object’s 
position is

A. 20 m

B. 16 m

C. 12 m

D. 8 m

E. 4 m

© 2015 Pearson Education, Inc.
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QuickCheck 2.11

Here is the velocity graph of an object that is at the origin 
(x  0 m) at t  0 s.

At t  4.0 s, the object’s 
position is

A. 20 m

B. 16 m

C. 12 m

D. 8 m

E. 4 m

© 2015 Pearson Education, Inc.

Displacement  area under the curve



Section 2.3 Instantaneous Velocity

© 2015 Pearson Education, Inc.



Slide 2-56

Instantaneous Velocity

• For one-dimensional motion, an object changing its 

velocity is either speeding up or slowing down.

• An object’s velocity—a speed and a direction—at a 

specific instant of time t is called the object’s

instantaneous velocity.

• From now on, the 

word “velocity” will 

always mean 

instantaneous velocity.

© 2015 Pearson Education, Inc.
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Finding the Instantaneous Velocity

• If the velocity changes, the position graph is a curved line. 

But we can compute a slope at a point by considering a 

small segment of the graph. Let’s look at the motion in a 

very small time interval right around t = 0.75 s. This is 

highlighted with a circle, and we show a closeup in the 

next graph.

© 2015 Pearson Education, Inc.
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Finding the Instantaneous Velocity

• In this magnified segment of the position graph, the curve 

isn’t apparent. It appears to be a line segment. We can find 

the slope by calculating the rise over the run, just as before:

vx = (1.6 m)/(0.20 s) = 8.0 m/s 

• This is the slope at t = 0.75 s and thus the velocity at this 

instant of time.

© 2015 Pearson Education, Inc.
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Finding the Instantaneous Velocity

• Graphically, the slope of the 

curve at a point is the same 

as the slope of a straight line 

drawn tangent to the curve at 

that point. Calculating rise 

over run for the tangent line, 

we get

vx = (8.0 m)/(1.0 s) = 8.0 m/s

• This is the same value we obtained from the closeup view. 

The slope of the tangent line is the instantaneous velocity 

at that instant of time.

© 2015 Pearson Education, Inc.
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Instantaneous Velocity

• Even when the speed varies we can still use the velocity-

versus-time graph to determine displacement.

• The area under the curve in a velocity-versus-time graph 

equals the displacement even for non-uniform motion.

© 2015 Pearson Education, Inc.
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QuickCheck 2.5

The slope at a point on a position-versus-time graph of an 
object is

A. The object’s speed at that point.

B. The object’s velocity at that point.

C. The object’s acceleration at that point.

D. The distance traveled by the object to that point.

E. I am not sure.

© 2015 Pearson Education, Inc.
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QuickCheck 2.5

The slope at a point on a position-versus-time graph of an 
object is

A. The object’s speed at that point.

B. The object’s velocity at that point.

C. The object’s acceleration at that point.

D. The distance traveled by the object to that point.

E. I am not sure.
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QuickCheck 2.9

When do objects 1 and 2 have the same velocity?

A. At some instant before 
time t0

B. At time t0

C. At some instant after 
time t0

D. Both A and B

E. Never

© 2015 Pearson Education, Inc.
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QuickCheck 2.9

When do objects 1 and 2 have the same velocity?

A. At some instant before 
time t0

B. At time t0

C. At some instant after 
time t0

D. Both A and B

E. Never
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QuickCheck 2.10

Masses P and Q move with the position graphs shown. Do 
P and Q ever have the same velocity? If so, at what time or 
times?

A. P and Q have the same velocity at 2 s.

B. P and Q have the same velocity at 1 s and 3 s.

C. P and Q have the same velocity at 1 s, 2 s, and 3 s.

D. P and Q never have the same velocity.

© 2015 Pearson Education, Inc.
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QuickCheck 2.10

Masses P and Q move with the position graphs shown. Do 
P and Q ever have the same velocity? If so, at what time or 
times?

A. P and Q have the same velocity at 2 s.

B. P and Q have the same velocity at 1 s and 3 s.

C. P and Q have the same velocity at 1 s, 2 s, and 3 s.

D. P and Q never have the same velocity.
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Example 2.5 The displacement during a rapid 
start

FIGURE 2.21 shows the velocity-versus-time graph of a car 

pulling away from a stop. How far does the car move during the 

first 3.0 s?

PREPARE Figure 2.21 is a graphical representation of the motion. 

The question How far? indicates that we need to find a 

displacement Δx rather than a position x. According to Equation 

2.7, the car’s displacement 

Δx = xf  xi between t = 0 s 

and t = 3 s is the area under 

the curve from t = 0 s to 

t = 3 s.

© 2015 Pearson Education, Inc.
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Example 2.5 The displacement during a rapid 
start (cont.)

SOLVE The curve in this case is an angled line, so the area is 

that of a triangle:

The car moves 18 m during the first 3 seconds as its velocity 

changes from 0 to 12 m/s.

© 2015 Pearson Education, Inc.
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Example 2.5 The displacement during a rapid 
start (cont.)

ASSESS The physically meaningful area is a product of s and 

m/s, so Δx has the proper units of m. Let’s check the 

numbers to see if they make physical sense. The final 

velocity, 12 m/s, is about 25 mph. Pulling away from a stop, 

you might expect to reach this speed in about 3 s—at least if 

you have a reasonably sporty vehicle! If the car had moved 

at a constant 12 m/s (the final velocity) during these 3 s, the 

distance would be 36 m. The actual distance traveled during 

the 3 s is 18 m—half of 36 m. This makes sense, as the 

velocity was 0 m/s at the start of the problem and increased 

steadily to 12 m/s.

© 2015 Pearson Education, Inc.
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QuickCheck 2.13

A car moves along a straight stretch of road. The following 
graph shows the car’s position as a function of time:

At what point (or points) do the following conditions apply?

• The displacement is zero.

• The speed is zero.

• The speed is increasing.

• The speed is decreasing.

© 2015 Pearson Education, Inc.
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QuickCheck 2.13

A car moves along a straight stretch of road. The following 
graph shows the car’s position as a function of time:

At what point (or points) do the following conditions apply?

• The displacement is zero. D

• The speed is zero. B, E

• The speed is increasing. C

• The speed is decreasing. A

© 2015 Pearson Education, Inc.



Section 2.4 Acceleration

© 2015 Pearson Education, Inc.



Slide 2-73

Acceleration

• We define a new motion concept to describe an object 

whose velocity is changing.

• The ratio of Δvx/Δt is the rate of change of velocity.

• The ratio of Δvx/Δt is the slope of a velocity-versus-time 

graph.

© 2015 Pearson Education, Inc.
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Units of Acceleration

• In our SI unit of velocity, 

60 mph = 27 m/s.

• The Corvette speeds up to 

27 m/s in Δt = 3.6 s.

• Every second, the 

Corvette’s velocity 

changes by 7.5 m/s.

• It is customary to abbreviate 

the acceleration units 

(m/s)/s as m/s2, which we 

say as “meters per second 

squared.”

© 2015 Pearson Education, Inc.
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Example 2.6 Animal acceleration

Lions, like most predators, are capable of very rapid starts. 

From rest, a lion can sustain an acceleration of 9.5 m/s2 for 

up to one second. How much time does it take a lion to go 

from rest to a typical recreational runner’s top speed of 10 

mph?

PREPARE We can start by converting to SI units. The speed 

the lion must reach is

The lion can accelerate at 9.5 m/s2, changing its speed by 

9.5 m/s per second, for only 1.0 s—long enough to reach 9.5 

m/s. It will take the lion less than 1.0 s to reach 4.5 m/s, so 

we can use ax = 9.5 m/s2 in our solution.
© 2015 Pearson Education, Inc.
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Example 2.6 Animal acceleration (cont.)

SOLVE We know the acceleration and the desired change in 

velocity, so we can rearrange Equation 2.8 to find the time:

ASSESS The lion changes its speed by 9.5 meters per second 

in one second. So it’s reasonable (if a bit intimidating) that it 

will reach 4.5 m/s in just under half a second.

© 2015 Pearson Education, Inc.
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Representing Acceleration

• An object’s acceleration is the slope of its velocity-

versus-time graph.
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Representing Acceleration

• We can find an acceleration graph from a velocity graph.

© 2015 Pearson Education, Inc.
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QuickCheck 2.12

© 2015 Pearson Education, Inc.

A particle has velocity      as it moves from point 1 to point 
2. The acceleration is shown. What is its velocity vector      
as it moves away from point 2?
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QuickCheck 2.12

© 2015 Pearson Education, Inc.

A particle has velocity      as it moves from point 1 to point 
2. The acceleration is shown. What is its velocity vector      
as it moves away from point 2?

B.
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QuickCheck 2.14

The motion diagram shows a particle that is slowing down. 
The sign of the position x and the sign of the velocity vx are:

A. Position is positive, velocity is positive.

B. Position is positive, velocity is negative.

C. Position is negative, velocity is positive.

D. Position is negative, velocity is negative.

© 2015 Pearson Education, Inc.
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QuickCheck 2.14

The motion diagram shows a particle that is slowing down. 
The sign of the position x and the sign of the velocity vx are:

A. Position is positive, velocity is positive.

B. Position is positive, velocity is negative.

C. Position is negative, velocity is positive.

D. Position is negative, velocity is negative.
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Example Problem

A ball moving to the right traverses the ramp shown below. 

Sketch a graph of the velocity versus time, and, directly 

below it, using the same scale for the time axis, sketch a 

graph of the acceleration versus time.

© 2015 Pearson Education, Inc.
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The Sign of the Acceleration

An object can move right or left (or up or down) while 

either speeding up or slowing down. Whether or not an 

object that is slowing down has a negative acceleration 

depends on the direction of motion.

© 2015 Pearson Education, Inc.
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The Sign of the Acceleration (cont.)

An object can move right or left (or up or down) while 

either speeding up or slowing down. Whether or not an 

object that is slowing down has a negative acceleration 

depends on the direction of motion.

© 2015 Pearson Education, Inc.
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QuickCheck 2.15

The motion diagram shows a particle that is slowing down. 
The sign of the acceleration ax is:

A. Acceleration is positive.

B. Acceleration is negative.

© 2015 Pearson Education, Inc.
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QuickCheck 2.15

The motion diagram shows a particle that is slowing down. 
The sign of the acceleration ax is:

A. Acceleration is positive.

B. Acceleration is negative.
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QuickCheck 2.16

A cyclist riding at 20 mph sees a stop sign and actually 
comes to a complete stop in 4 s. He then, in 6 s, returns to a 
speed of 15 mph. Which is his motion diagram?

© 2015 Pearson Education, Inc.
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QuickCheck 2.16

A cyclist riding at 20 mph sees a stop sign and actually 
comes to a complete stop in 4 s. He then, in 6 s, returns to a 
speed of 15 mph. Which is his motion diagram?

© 2015 Pearson Education, Inc.
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QuickCheck 2.17

These four motion diagrams show the motion of a particle 
along the x-axis.

1. Which motion diagrams correspond to a positive 
acceleration?

2. Which motion diagrams correspond to a negative 
acceleration?

© 2015 Pearson Education, Inc.



Slide 2-91

QuickCheck 2.17

These four motion diagrams show the motion of a particle 
along the x-axis.

1. Which motion diagrams correspond to a positive 
acceleration?

2. Which motion diagrams correspond to a negative 
acceleration?

© 2015 Pearson Education, Inc.
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QuickCheck 2.18

Mike jumps out of a tree and lands on a trampoline. The 
trampoline sags 2 feet before launching Mike back into the 
air.

At the very bottom, where the sag is the greatest, Mike’s 
acceleration is

A. Upward.

B. Downward.

C. Zero.
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QuickCheck 2.18

Mike jumps out of a tree and lands on a trampoline. The 
trampoline sags 2 feet before launching Mike back into the 
air.

At the very bottom, where the sag is the greatest, Mike’s 
acceleration is

A. Upward.

B. Downward.

C. Zero.
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QuickCheck 2.19

A cart slows down while moving 
away from the origin. What do the 
position and velocity graphs look like?
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QuickCheck 2.19

A cart slows down while moving 
away from the origin. What do the 
position and velocity graphs look like?
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QuickCheck 2.20

A cart speeds up toward the 
origin. What do the position and 
velocity graphs look like?
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QuickCheck 2.20

A cart speeds up toward the 
origin. What do the position and 
velocity graphs look like?
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QuickCheck 2.21

A cart speeds up while moving 
away from the origin. What do 
the velocity and acceleration 
graphs look like?
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QuickCheck 2.21

A cart speeds up while moving 
away from the origin. What do 
the velocity and acceleration 
graphs look like?
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QuickCheck 2.22

Here is a motion diagram of a car speeding up on a straight 
road:

The sign of the acceleration ax is

A. Positive.

B. Negative.

C. Zero.
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QuickCheck 2.22

Here is a motion diagram of a car speeding up on a straight 
road:

The sign of the acceleration ax is

A. Positive.

B. Negative.

C. Zero.

© 2015 Pearson Education, Inc.
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QuickCheck 2.23

A cart slows down while moving 
away from the origin. What do 
the velocity and acceleration 
graphs look like?
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QuickCheck 2.23

A cart slows down while moving 
away from the origin. What do 
the velocity and acceleration 
graphs look like?
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QuickCheck 2.24

A cart speeds up while moving 
toward the origin. What do the 
velocity and acceleration graphs 
look like?
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QuickCheck 2.24

A cart speeds up while moving 
toward the origin. What do the 
velocity and acceleration graphs 
look like?
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C.
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QuickCheck 2.25

Which velocity-versus-time graph 
goes with this acceleration graph?
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QuickCheck 2.25

Which velocity-versus-time graph
goes with this acceleration graph?
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E.



Section 2.5 Motion with Constant Acceleration
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Motion with Constant Acceleration

• We can use the slope of the graph in the velocity graph to 

determine the acceleration of the rocket.
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Constant Acceleration Equations

• We can use the acceleration to find (vx)f at a later time tf.

• We have expressed this equation for motion along the 

x-axis, but it is a general result that will apply to any axis.
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Constant Acceleration Equations

• The velocity-versus-time graph for constant-acceleration 

motion is a straight line with value (vx)i at time ti and 

slope ax.

• The displacement Δx during a time interval Δt is the area 

under the velocity-versus-

time graph shown in the 

shaded area of the figure.
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Constant Acceleration Equations

• The shaded area can be subdivided into a rectangle 

and a triangle. Adding these areas gives
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Constant Acceleration Equations

• Combining Equation 2.11 with Equation 2.12 gives us a 

relationship between displacement and velocity:

• Δx in Equation 2.13 is the displacement (not the 

distance!).
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Constant Acceleration Equations

For motion with constant acceleration:

• Velocity changes steadily:

• The position changes as the square of the time interval:

• We can also express the change in velocity in terms of 

distance, not time:

© 2015 Pearson Education, Inc.
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Example 2.8 Coming to a stop

As you drive in your car at 15 m/s (just a bit under 35 mph), you 

see a child’s ball roll into the street ahead of you. You hit the 

brakes and stop as quickly as you can. In this case, you come to 

rest in 1.5 s. How far does your car travel as you brake to a stop?

PREPARE The problem statement gives us a description of 

motion in words. To help us visualize the situation, FIGURE 

2.30 illustrates the key features 

of the motion with a motion 

diagram and a velocity graph. 

The graph is based on the car 

slowing from 15 m/s to 0 m/s 

in 1.5 s.
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Example 2.8 Coming to a stop (cont.)

SOLVE We’ve assumed that your car is moving to the right, so its 

initial velocity is (vx)i = +15 m/s. After you come to rest, your final 

velocity is (vx)f = 0 m/s. We use the definition of acceleration from 

Synthesis 2.1:

An acceleration of 10 m/s2 (really 10 m/s per second) means the car 

slows by 10 m/s every second. 

Now that we know the acceleration, we can compute the distance that 

the car moves as it comes to rest using the second constant 

acceleration equation in Synthesis 2.1:
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Example 2.8 Coming to a stop (cont.)

ASSESS 11 m is a little over 35 feet. That’s a reasonable 

distance for a quick stop while traveling at about 35 mph. 

The purpose of the Assess step is not to prove that your 

solution is correct but to use common sense to recognize 

answers that are clearly wrong. Had you made a calculation 

error and ended up with an answer of 1.1 m—less than 4 

feet—a moment’s reflection should indicate that this 

couldn’t possibly be correct.
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Example Problem: Reaching New Heights

Spud Webb, height 5'7'', was one of the shortest basketball 

players to play in the NBA. But he had in impressive 

vertical leap; he was reputedly able to jump 110 cm off the 

ground.

To jump this high, with what speed would he leave the 

ground?
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Quadratic Relationships

© 2015 Pearson Education, Inc.
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Example 2.9 Displacement of a drag racer

A drag racer, starting from rest, travels 6.0 m in 1.0 s. Suppose the car 

continues this acceleration for an additional 4.0 s. How far from the 

starting line will the car be?

PREPARE We assume that the acceleration is constant, and the initial 

speed is zero, so the displacement will scale as the square of the time.

SOLVE After 1.0 s, the car has traveled 6.0 m; after another 4.0 s, a 

total of 5.0 s will have elapsed. The initial elapsed time was 1.0 s, so 

the elapsed time increases by a factor of 5. The displacement thus 

increases by a factor of 52, or 25. The total displacement is

Δx = 25(6.0 m) = 150 m

ASSESS This is a big distance in a short time, but drag racing is a fast 

sport, so our answer makes sense.
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Section 2.6 Solving One-Dimensional 
Motion Problems
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Problem-Solving Strategy

© 2015 Pearson Education, Inc.
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Problem-Solving Strategy (cont.)
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Problem-Solving Strategy (cont.)
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Problem-Solving Strategy (cont.)
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The Pictorial Representation
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The Visual Overview

• The visual overview will consist of some or all of the 

following elements:

• A motion diagram. A good strategy for solving a motion 

problem is to start by drawing a motion diagram.

• A pictorial representation, as defined above.

• A graphical representation. For motion problems, it is often 

quite useful to include a graph of position and/or velocity.

• A list of values. This list should sum up all of the important 

values in the problem.
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Example 2.11 Kinematics of a rocket launch

A Saturn V rocket is launched straight up with a constant acceleration of 18 m/s2. 

After 150 s, how fast is the rocket moving and how far has it traveled?

PREPARE FIGURE 2.32 shows a visual overview of the rocket launch that includes a 

motion diagram, a pictorial representation, and a list of values. The visual overview 

shows the whole problem in a nutshell. The motion diagram illustrates the motion of 

the rocket. The pictorial representation (produced according to Tactics Box 2.2) 

shows axes, identifies the important points of the motion, and defines variables. 

Finally, we have included a 

list of values that gives the known and 

unknown quantities. In the visual 

overview we have taken the 

statement of the problem in 

words and made it much more 

precise. The overview contains 

everything you need to know

about the problem.
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Example 2.11 Kinematics of a rocket launch 
(cont.)

SOLVE Our first task is to find the final velocity. Our list of 

values includes the initial velocity, the acceleration, and the 

time interval, so we can use the first kinematic equation of 

Synthesis 2.1 to find the final velocity:
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Example 2.11 Kinematics of a rocket launch 
(cont.)

SOLVE

The distance traveled is found using the second equation in 

Synthesis 2.1:
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Problem-Solving Strategy for Motion with 
Constant Acceleration

© 2015 Pearson Education, Inc.
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Example 2.12 Calculating the minimum length 
of a runway

A fully loaded Boeing 747 with all engines at full thrust accelerates at 2.6 

m/s2. Its minimum takeoff speed is 70 m/s. How much time will the plane 

take to reach its takeoff speed? What minimum length of runway does the 

plane require for takeoff?

PREPARE The visual overview of FIGURE 2.33 summarizes the important 

details of the problem. We set xi and ti equal to zero at the starting point of 

the motion, when the plane is at rest and the acceleration begins. The final 

point of the motion is when the plane achieves the necessary takeoff speed 

of 70 m/s. The plane is accelerating to the right, so we will compute the time 

for the plane to reach a velocity 

of 70 m/s and the position of the 

plane at this time, giving us the 

minimum length of the runway.
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Example 2.12 Calculating the minimum length 
of a runway (cont.)

SOLVE First we solve for the time required for the plane to 

reach takeoff speed. We can use the first equation in 

Synthesis 2.1 to compute this time:

We keep an extra significant figure here because we will use 

this result in the next step of the calculation.
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Example 2.12 Calculating the minimum length 
of a runway (cont.)

SOLVE

Given the time that the plane takes to reach takeoff speed, 

we can compute the position of the plane when it reaches 

this speed using the second equation in Synthesis 2.1:

Our final answers are thus that the plane will take 27 s to 

reach takeoff speed, with a minimum runway length of 

940 m.
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Example 2.12 Calculating the minimum length 
of a runway (cont.)

ASSESS Think about the last time you flew; 27 s seems like a 

reasonable time for a plane to accelerate on takeoff. Actual 

runway lengths at major airports are 3000 m or more, a few 

times greater than the minimum length, because they have 

to allow for emergency stops during an aborted takeoff. (If 

we had calculated a distance far greater than 3000 m, we 

would know we had done something wrong!)
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Example Problem: Champion Jumper

The African antelope known as a 

springbok will occasionally jump straight 

up into the air, a movement known as a 

pronk. The speed when leaving the ground 

can be as high as 7.0 m/s.

If a springbok leaves the ground at 7.0 m/s:

A. How much time will it take to reach its highest point?

B. How long will it stay in the air?

C. When it returns to earth, how fast will it be moving?
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Section 2.7 Free Fall

© 2015 Pearson Education, Inc.



Slide 2-138

Free Fall

• If an object moves under the 

influence of gravity only, and 

no other forces, we call the 

resulting motion free fall.

• Any two objects in free fall, 

regardless of their mass, 

have the same acceleration.

• On the earth, air resistance is 

a factor. For now we will 

restrict our attention to 

situations in which air 

resistance can be ignored.

Apollo 15 lunar astronaut David Scott 

performed a classic experiment on the moon, 

simultaneously dropping a hammer and a 

feather from the same height. Both hit the 

ground at the exact same time—something 

that would not happen in the atmosphere of 

the earth!
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Free Fall

• The figure shows the motion diagram for an object that 

was released from rest and falls freely. The diagram and 

the graph would be the same for all falling objects.
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Free Fall

• The free-fall acceleration always points down, no matter 

what direction an object is moving.

• Any object moving under the influence of gravity only, 

and no other force, is in free fall.
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Free Fall

• g, by definition, is always positive. There will never be a 

problem that uses a negative value for g.

• Even though a falling object speeds up, it has negative 

acceleration (–g).

• Because free fall is motion with constant acceleration, we 

can use the kinematic equations for constant acceleration 

with ay = –g.

• g is not called “gravity.” g is the free-fall acceleration.

• g = 9.80 m/s2 only on earth. Other planets have different 

values of g.

• We will sometimes compute acceleration in units of g.
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QuickCheck 2.26

A ball is tossed straight up in the air. At its very highest 
point, the ball’s instantaneous acceleration ay is

A. Positive.

B. Negative.

C. Zero.
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QuickCheck 2.26

A ball is tossed straight up in the air. At its very highest 
point, the ball’s instantaneous acceleration ay is

A. Positive.

B. Negative.

C. Zero.
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QuickCheck 2.27

An arrow is launched vertically upward. 
It moves straight up to a maximum 
height, then falls to the ground. The 
trajectory of the arrow is noted. At which 
point of the trajectory is the arrow’s 
acceleration the greatest? The least? 
Ignore air resistance; the only force 
acting is gravity.
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Slide 2-145

QuickCheck 2.27

An arrow is launched vertically upward. 
It moves straight up to a maximum 
height, then falls to the ground. The 
trajectory of the arrow is noted. At which 
point of the trajectory is the arrow’s 
acceleration the greatest? The least? 
Ignore air resistance; the only force 
acting is gravity.

© 2015 Pearson Education, Inc.
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QuickCheck 2.28

An arrow is launched vertically upward. It moves straight up to a 
maximum height, then falls to the ground. The trajectory of the 
arrow is noted. Which graph best represents the vertical velocity 
of the arrow as a function of time? Ignore air resistance; the only 
force acting is gravity.
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QuickCheck 2.28

An arrow is launched vertically upward. It moves straight up to a 
maximum height, then falls to the ground. The trajectory of the 
arrow is noted. Which graph best represents the vertical velocity 
of the arrow as a function of time? Ignore air resistance; the only 
force acting is gravity.

© 2015 Pearson Education, Inc.
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Example 2.14 Analyzing a rock’s fall

A heavy rock is dropped from rest at the top of a cliff and falls 100 m 

before hitting the ground. How long does the rock take to fall to the 

ground, and what is its velocity when it hits?

PREPARE FIGURE 2.36 shows a visual overview with all necessary 

data. We have placed the origin at the ground, which makes 

yi = 100 m.
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Example 2.14 Analyzing a rock’s fall (cont.)

SOLVE Free fall is motion with the specific constant acceleration 

ay = g. The first question involves a relation between time and 

distance, a relation expressed by the second equation in Synthesis 2.1. 

Using (vy)i = 0 m/s and ti = 0 s, we find

We can now solve for tf:

Now that we know the fall time, we can use the first kinematic 

equation to find (vy)f:
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Example 2.14 Analyzing a rock’s fall (cont.)

ASSESS Are the answers reasonable? Well, 100 m is about 300 

feet, which is about the height of a 30-floor building. How long 

does it take something to fall 30 floors? Four or five seconds 

seems pretty reasonable. How fast would it be going at the 

bottom? Using an approximate version of our conversion factor 

1 m/s ≈ 2 mph, we find that 44.3 m/s ≈ 90 mph. That also seems 

like a pretty reasonable speed for something that has fallen 30 

floors. Suppose we had made a mistake. If we misplaced a 

decimal point we could have calculated a speed of 443 m/s, or 

about 900 mph! This is clearly not reasonable. If we had 

misplaced the decimal point in the other direction, we would 

have calculated a speed of 4.3 m/s ≈ 9 mph. This is another 

unreasonable result, because this is slower than a typical 

bicycling speed.
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Example 2.16 Finding the height of a leap

A springbok is an antelope found in 

southern Africa that gets its name from 

its remarkable jumping ability. When a 

springbok is startled, it will leap straight 

up into the air—a maneuver called a “pronk.” A springbok 

goes into a crouch to perform a pronk. It then extends its 

legs forcefully, accelerating at 35 m/s2 for 0.70 m as its legs 

straighten. Legs fully extended, it leaves the ground and 

rises into the air.

a. At what speed does the springbok leave the ground?

b. How high does it go?

© 2015 Pearson Education, Inc.



Slide 2-152

Example 2.16 Finding the height of a leap 
(cont.)
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Example 2.16 Finding the height of a leap 
(cont.)

PREPARE We begin with the visual overview shown in FIGURE 2.38, where 

we’ve identified two different phases of the motion: the springbok pushing 

off the ground and the springbok rising into the air. We’ll treat these as two 

separate problems that we solve in turn. We will “re-use” the variables yi, yf, 

(vy)i, and (vy)f for the two phases of the motion. 

For the first part of our solution, in Figure 2.38a we 

choose the origin of the y-axis at the position of the 

springbok deep in the crouch. The final position 

is the top extent of the push, at the instant 

the springbok leaves the ground. 

We want to find the velocity at this 

position because that’s how fast the 

springbok is moving as it leaves

the ground.

© 2015 Pearson Education, Inc.



Slide 2-154

Example 2.16 Finding the height of a leap 
(cont.)

SOLVE a. For the first phase, pushing off the ground, we have 

information about displacement, initial velocity, and acceleration, but 

we don’t know anything about the time interval. The third equation in 

Synthesis 2.1 is perfect for this type of situation. We can rearrange it 

to solve for the velocity with which the springbok 

lifts off the ground:

The springbok leaves the ground 

with a speed of 7.0 m/s.
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Example 2.16 Finding the height of a leap 
(cont.)

Figure 2.38b essentially starts over—we have defined a new vertical axis 

with its origin at the ground, so the highest point of the springbok’s motion 

is a distance above the ground. The table of values shows the key piece of 

information for this second part of the problem: The initial velocity for part 

b is the final velocity from part a.

After the springbok leaves the ground, this is a free-fall problem because the 

springbok is moving under the influence of gravity only. We want to know 

the height of the leap, so we are 

looking for the height at the top point 

of the motion. This is a turning point 

of the motion, with the instantaneous 

velocity equal to zero. Thus yf, the 

height of the leap, is the springbok’s

position at the instant (vy)f = 0.
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Example 2.16 Finding the height of a leap 
(cont.)

SOLVE b. Now we are ready for the second phase of the motion, the 

vertical motion after leaving the ground. The third equation in 

Synthesis 2.1 is again appropriate because again we don’t know the 

time. Because yi = 0, the springbok’s displacement is Δy = yf  yi = yf, 

the height of the vertical leap. From part a, the initial velocity is 

(vy)i = 7.0 m/s, and the final velocity is (vy)f = 0. This is free-fall 

motion, with ay = g; thus

which gives

Solving for yf, we get a jump 

height of
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Example 2.16 Finding the height of a leap 
(cont.)

ASSESS 2.5 m is a remarkable leap—a bit over 8 ft—but 

these animals are known for their jumping ability, so this 

seems reasonable.
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Example Problem

Passengers on the Giant Drop, a free-fall ride at Six Flags 

Great America, sit in cars that are raised to the top of a 

tower. The cars are then released for 2.6 s of free fall. How 

fast are the passengers moving at the end of this speeding up 

phase of the ride? If the cars in which they ride then come to 

rest in a time of 1.0 s, what is the acceleration (magnitude 

and direction) of this slowing down phase of the ride? Given 

these numbers, what is the minimum possible height of the 

tower?
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Summary: General Strategies
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Summary: General Strategies
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Summary: Important Concepts
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Summary: Important Concepts
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Summary: Important Concepts
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Summary: Applications
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Summary: Applications
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Summary: Applications
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Summary
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Summary
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Summary
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