

Lecture Presentation

Chapter 1
Representing Motion

Suggested Videos for Chapter 1

- Prelecture Videos
- Introduction
- Putting Numbers on Nature
- Class Videos
- Series Introduction
- Video Tutor Solutions
- Representing Motion

Suggested Simulations for Chapter 1

- PhETs
- Estimation
- Vector Addition

Chapter 1 Representing Motion

Chapter Goal: To introduce the fundamental concepts of
motion and to review related basic mathematical principles.

Chapter 1 Preview Looking Ahead: Describing Motion

- This series of images of a skier clearly shows his motion. Such visual depictions are a good first step in describing motion.

- You'll learn to make motion diagrams that provide a simplified view of the motion of an object.

Chapter 1 Preview Looking Ahead: Numbers and Units

- Quantitative descriptions involve numbers, and numbers require units. This speedometer gives speed in mph and km / h.

- You'll learn the units used in science, and you'll learn to convert between these and more familiar units.

Chapter 1 Preview Looking Ahead

Chapter Preview

Each chapter starts with a preview outlining the major themes and what you'll be learning for each theme.

Each preview also looks back at an important past topic, with a question to help refresh your memory.

Describing Motion

This series of images of a skier clearly shows his motion. Such visual depictions are a good first step in describing motion.

In this chapter, you'll learn to make motion diagrams that provide a simplified view of the motion of an object.

Numbers and Units

Quantitative descriptions involve numbers, and numbers require units. This speedometer gives speed in mph and km / h.

You'll learn the units used in science, and you'll learn to convert between these and more familiar units.

Text: p. 2

Chapter 1 Preview Looking Back: Trigonometry

- In a previous course, you learned mathematical relationships among the sides and the angles of triangles.

- In this course you'll use these relationships to analyze motion and other problems.

Chapter 1 Preview Stop to Think

What is the length of the hypotenuse of this triangle?
A. 6 cm
B. 8 cm
C. 10 cm
D. 12 cm
E. 14 cm

Reading Question 1.1

What is the difference between speed and velocity?
A. Speed is an average quantity while velocity is not.
B. Velocity contains information about the direction of motion while speed does not.
C. Speed is measured in mph, while velocity is measured in m / s.
D. The concept of speed applies only to objects that are neither speeding up nor slowing down, while velocity applies to every kind of motion.
E. Speed is used to measure how fast an object is moving in a straight line, while velocity is used for objects moving along curved paths.

Reading Question 1.1

What is the difference between speed and velocity?
A. Speed is an average quantity while velocity is not.
B. Velocity contains information about the direction of motion while speed does not.
C. Speed is measured in mph, while velocity is measured in m / s.
D. The concept of speed applies only to objects that are neither speeding up nor slowing down, while velocity applies to every kind of motion.
E. Speed is used to measure how fast an object is moving in a straight line, while velocity is used for objects moving along curved paths.

Reading Question 1.2

The quantity 2.67×10^{3} has how many significant figures?
A. 1
B. 2
C. 3
D. 4
E. 5

Reading Question 1.2

The quantity 2.67×10^{3} has how many significant figures?
A. 1
B. 2
C. 3
D. 4
E. 5

Reading Question 1.3

The correct SI units for distance and mass are
A. Feet, pounds.
B. Centimeters, grams.
C. Meters, grams.
D. Meters, kilograms.

Reading Question 1.3

The correct SI units for distance and mass are
A. Feet, pounds.
B. Centimeters, grams.
C. Meters, grams.
D. Meters, kilograms.

Reading Question 1.4

If Sam walks 100 m to the right, then 200 m to the left, his net displacement vector
A. Points to the right.
B. Points to the left.
C. Has zero length.
D. Cannot tell without more information.

Reading Question 1.4

If Sam walks 100 m to the right, then 200 m to the left, his net displacement vector
A. Points to the right.
\checkmark B. Points to the left.
C. Has zero length.
D. Cannot tell without more information.

Reading Question 1.5

Velocity vectors point

A. In the same direction as displacement vectors.
B. In the opposite direction as displacement vectors.
C. Perpendicular to displacement vectors.
D. In the same direction as acceleration vectors.
E. Velocity is not represented by a vector.

Reading Question 1.5

Velocity vectors point

\checkmark A. In the same direction as displacement vectors.
B. In the opposite direction as displacement vectors.
C. Perpendicular to displacement vectors.
D. In the same direction as acceleration vectors.
E. Velocity is not represented by a vector.

Section 1.1 Motion: A First Look

Types of Motion

- Motion is the change of an object's position or orientation with time.

- The path along which an object moves is called the object's trajectory.

Making a Motion Diagram

- These motion diagrams in one dimension show objects moving at constant speed (skateboarder), speeding up (runner) and slowing down (car).

Making a Motion Diagram

- This motion diagram shows motion in two dimensions with changes in both speed and direction.

QuickCheck 1.1

Car A

Car B

Motion diagrams are made of two cars. Both have the same time interval between photos. Which car, A or B , is going slower?

QuickCheck 1.1

The Particle Model

- The particle model of motion is a simplification in which we treat a moving object as if all of its mass were concentrated at a single point
(a) Motion diagram of a car stopping

(b) Same motion diagram using the particle model

The same amount of time elapses

Numbers show the order in which the frames were taken.

QuickCheck 1.2

Two runners jog along a track. The positions are shown at 1 s intervals. Which runner is moving faster?

QuickCheck 1.2

Two runners jog along a track. The positions are shown at 1 s intervals. Which runner is moving faster?

QuickCheck 1.3

Two runners jog along a track. The times at each position are shown. Which runner is moving faster?

A. Runner A
B. Runner B
C. Both runners are moving at the same speed.

QuickCheck 1.3

Two runners jog along a track. The times at each position are shown. Which runner is moving faster?

A. Runner A
B. Runner B
C. Both runners are moving at the same speed.

Section 1.2 Position and Time: Putting Numbers on Nature

Position and Coordinate Systems

- To specify position we need a reference point (the origin), a distance from the origin, and a direction from the origin.

The post office defines the zero, or origin, of the coordinate system.

This cow is at
position -5 miles.

Your car is at
position +4 miles.

- The combination of an origin and an axis marked in both the positive and negative directions makes a coordinate system.

Position and Coordinate Systems

The start of the race is a natural choice for the origin.

This is the symbol, or coordinate, used to represent positions along the axis.

The units in which x is measured go here.

- The symbol that represents a position along an axis is called a coordinate.

Time

- For a complete motion diagram we need to label each frame with its corresponding time (symbol t) as read off a clock.

Car starts braking here

If we're interested in only the braking part of the motion, we assign $t=0 \mathrm{~s}$ here.

Changes in Position and Displacement

- A change of position is called a displacement.

A final position to the left of the initial
position gives a negative displacement.

- Displacement is the difference between a final position and an initial position:

$$
\Delta x=x_{\mathrm{f}}-x_{\mathrm{i}}=150 \mathrm{ft}-50 \mathrm{ft}=100 \mathrm{ft}
$$

Change in Time

- In order to quantify motion, we'll need to consider changes in time, which we call time intervals.

Initial position x_{i}
Final position x_{f}

- A time interval Δt measures the elapsed time as an object moves from an initial position x_{i} at time t_{i} to a final position $\boldsymbol{x}_{\mathrm{f}}$ at time $\boldsymbol{t}_{\mathrm{f}} . \Delta t$ is always positive.

Example 1.1 How long a ride?

Carol is enjoying a bicycle ride on a country road that runs eastwest past a water tower. Define a coordinate system so that increasing x means moving east. At noon, Carol is 3 miles (mi) east of the water tower. A half-hour later, she is 2 mi west of the water tower. What is her displacement during that half-hour?

PREPARE Although it may seem like overkill for such a simple problem, you should start by making a drawing, like the one in FIGURE 1.15, with the x-axis along the road.

Example 1.1 How long a ride? (cont.)

SOLVE We've specified values for Carol's initial and final positions in our drawing. We can thus compute her displacement:

$$
\Delta x=x_{\mathrm{f}}-x_{\mathrm{i}}=(-2 \mathrm{mi})-(3 \mathrm{mi})=-5 \mathrm{mi}
$$

ASSESS Carol is moving to the west, so we expect her displacement to be negative-and it is. We can see from our drawing in Figure 1.15 that she has moved 5 miles from her starting position, so our answer seems reasonable. Carol travels 5 miles in a half-hour, quite a reasonable pace for a cyclist.

QuickCheck 1.4

Maria is at position $x=23 \mathrm{~m}$. She then undergoes a displacement $\Delta x=-50 \mathrm{~m}$. What is her final position?
A. -27 m
B. -50 m
C. 23 m
D. 73 m

QuickCheck 1.4

Maria is at position $x=23 \mathrm{~m}$. She then undergoes a displacement $\Delta x=-50 \mathrm{~m}$. What is her final position?
A. -27 m
B. -50 m
C. 23 m
D. 73 m

QuickCheck 1.5

An ant zig-zags back and forth on a picnic table as shown.

The ant's distance traveled and displacement are
A. 50 cm and 50 cm
B. 30 cm and 50 cm
C. 50 cm and 30 cm
D. 50 cm and -50 cm
E. 50 cm and -30 cm

QuickCheck 1.5

An ant zig-zags back and forth on a picnic table as shown.

The ant's distance traveled and displacement are
A. 50 cm and 50 cm
B. 30 cm and 50 cm
C. 50 cm and 30 cm
D. 50 cm and -50 cm
E. 50 cm and -30 cm

Section 1.3 Velocity

Velocity and Speed

- Motion at a constant speed in a straight line is called uniform motion.

During each second, the car moves
twice as far as the bicycle. Hence the
car is moving at a greater speed.

$$
\text { speed }=\frac{\text { distance traveled in a given time interval }}{\text { time interval }}
$$

Speed of an object in uniform motion

Example Problem

Jane walks to the right at a constant rate, moving 3 m in 3 s . At $t=0 \mathrm{~s}$ she passes the $x=1 \mathrm{~m}$ mark. Draw her motion diagram from $t=-1 \mathrm{~s}$ to $t=4 \mathrm{~s}$.

Velocity and Speed

- Speed measures only how fast an object moves, but velocity tells us both an object's speed and its direction.

- The velocity defined by Equation 1.2 is called the average velocity.

Example 1.2 Finding the speed of a seabird

Albatrosses are seabirds that spend most of their lives flying over the ocean looking for food. With a stiff tailwind, an albatross can fly at high speeds. Satellite data on one particularly speedy albatross showed it 60 miles east of its roost at 3:00 PM and then, at 3:15 PM, 80 miles east of its roost. What was its velocity?

Example 1.2 Finding the speed of a seabird (cont.)

PREPARE The statement of the problem provides us with a natural coordinate system: We can measure distances with respect to the roost, with distances to the east as positive. With this coordinate system, the motion of the albatross appears as in FIGURE 1.18. The motion takes place between 3:00 and 3:15, a time interval of 15 minutes, or 0.25 hour.
solve We know the initial and final positions, and we know the time interval, so we can calculate the velocity:

$$
v=\frac{\Delta x}{\Delta t}=\frac{x_{\mathrm{f}}-x_{\mathrm{i}}}{0.25 \mathrm{~h}}=\frac{20 \mathrm{mi}}{0.25 \mathrm{~h}}=80 \mathrm{mph}
$$

Example Problem

At $t=12 \mathrm{~s}$, Frank is at $x=25 \mathrm{~m} .5 \mathrm{~s}$ later, he's at $x=20 \mathrm{~m}$. What is Frank's velocity?

This example indicates that velocities to the left are negative. The information that $t=12 \mathrm{~s}$ is extraneous.

Example Problem

Jenny runs 1 mi to the northeast, then 1 mi south. Graphically find her net displacement.

Section 1.4 A Sense of Scale: Significant Figures, Scientific Notation, and Units

Measurements and Significant Figures

- When we measure any quantity we can do so with only a certain precision.

- We state our knowledge of a measurement through the use of significant figures: digits that are reliably known.
(1) When you multiply or divide several numbers, or when you take roots, the number of significant figures in the answer should match the number of significant figures of the least precisely known number used in the calculation:

Three significant figures

(2) When you add or subtract several numbers, the number of decimal places in the answer should match the smallest number of decimal places of any number used in the calculation:

$$
18.54 \text { - Two decimal places }
$$

$\frac{+106.6}{125.1 \text { F }}$ - One decimal place
125.1 F the two, or one decimal place.
(3) Exact numbers have no uncertainty and, when used in calculations, do not change the number of significant figures of measured numbers. Examples of exact numbers are π and the number 2 in the relation $d=2 r$ between a circle's diameter and radius.

There is one notable exception to these rules:

- It is acceptable to keep one or two extra digits during intermediate steps of a calculation to minimize round-off errors in the calculation. But the final answer must be reported with the proper number of significant figures.

Text: p. 12

QuickCheck 1.7

Rank in order, from the most to the least, the number of significant figures in the following numbers. For example, if b has more than c, c has the same number as a , and a has more than d , you would give your answer as $\mathrm{b}>\mathrm{c}=\mathrm{a}>\mathrm{d}$.
a. 8200
b. 0.0052
c. 0.430
d. 4.321×10^{-10}
A. $\mathrm{d}>\mathrm{c}>\mathrm{b}=\mathrm{a}$
B. $a=b=d>c$
C. $b=d>c>a$
D. $d>c>a>b$
E. $a=d>c>b$

QuickCheck 1.7

Rank in order, from the most to the least, the number of significant figures in the following numbers. For example, if b has more than c, c has the same number as a , and a has more than d , you would give your answer as $\mathrm{b}>\mathrm{c}=\mathrm{a}>\mathrm{d}$.
a. 8200
2? Ambiguous
b. 0.0052
c. 0.430
d. 4.321×10^{-10}
A. $d>c>b=a$
B. $a=b=d>c$
C. $b=d>c>a$
D. $d>c>a>b$
E. $a=d>c>b$

Scientific Notation

- Writing very large (much greater than 1) and very small (much less than 1) numbers is cumbersome and does not make clear how many significant figures are involved.

To convert a number into scientific notation:
(1) For a number greater than 10 , move the decimal point to the left until only one digit remains to the left of the decimal point. The remaining number is then multiplied by 10 to a power; this power is given by the number of spaces the decimal point was moved. Here we convert the diameter of the earth to scientific notation:

$$
\begin{aligned}
& \text { We move the decimal point until there is only } \\
& \text { one digit to its left, counting the number of steps. } \\
& \text { Since we moved the decimal point } \\
& 6 \text { steps, the power of ten is } 6 \text {. }
\end{aligned}
$$

(2) For a number less than 1, move the decimal point to the right until it passes the first digit that isn't a zero. The remaining number is then multiplied by 10 to a negative power; the power is given by the number of spaces the decimal point was moved. For the diameter of a red blood cell we have:

Units

- Scientists use a system of units called le Système International d'Unités, commonly referred to as SI Units.

TABLE 1.1 Common SI units

Quantity
 Unit
 Abbreviation

time
second
S
length
meter
m
mass
kilogram
kg

Unit Conversions

TACTICS
BOX 1.3
Making a unit conversion

Text: p. 15

Estimation

- A one-significant-figure estimate or calculation is called an order-of-magnitude estimate.
- An order-of-magnitude estimate is indicated by the symbol \sim, which indicates even less precision than the "approximately equal" symbol \approx.

TABLE 1.4 Some approximate conversion factors

Quantity	SI unit	Approximate conversion
Mass	kg	$1 \mathrm{~kg} \approx 2 \mathrm{lb}$
Length	m	$1 \mathrm{~m} \approx 3 \mathrm{ft}$
	cm	$3 \mathrm{~cm} \approx 1 \mathrm{in}$
	km	$5 \mathrm{~km} \approx 3 \mathrm{mi}$
Speed	m / s	$1 \mathrm{~m} / \mathrm{s} \approx 2 \mathrm{mph}$
	km / h	$10 \mathrm{~km} / \mathrm{h} \approx 6 \mathrm{mph}$

Example 1.5 How fast do you walk?

Estimate how fast you walk, in meters per second.
PREPARE In order to compute speed, we need a distance and a time. If you walked a mile to campus, how long would this take? You'd probably say 30 minutes or so-half an hour. Let's use this rough number in our estimate.

Example 1.5 How fast do you walk? (cont.)

SOLVE Given this estimate, we compute your speed as

$$
\text { speed }=\frac{\text { distance }}{\text { time }} \sim \frac{1 \text { mile }}{1 / 2 \text { hour }}=2 \frac{\mathrm{mi}}{\mathrm{~h}}
$$

But we want the speed in meters per second. Since our calculation is only an estimate, we use an approximate conversion factor from Table 1.4:

$$
1 \frac{\mathrm{mi}}{\mathrm{~h}} \sim 0.5 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

This gives an approximate walking speed of $1 \mathrm{~m} / \mathrm{s}$.

Example 1.5 How fast do you walk? (cont.)

ASSESS Is this a reasonable value? Let's do another estimate. Your stride is probably about 1 yard long-about 1 meter. And you take about one step per second; next time you are walking, you can count and see. So a walking speed of 1 meter per second sounds pretty reasonable.

Section 1.5 Vectors and Motion: A First Look

Scalars and Vectors

- When a physical quantity is described by a single number (with a unit), we call it a scalar quantity.
- A vector quantity is a quantity that has both a size (How far? or How fast?) and a direction (Which way?).
- The size or length of a vector is called its magnitude.
- We graphically represent a vector as an arrow.

Displacement Vectors

- The displacement vector represents the distance and direction of an object's motion.

- An object's displacement vector is drawn from the object's initial position to its final position, regardless of the actual path followed between these two points.

Vector Addition

- The net displacement for a trip with two legs is the sum of the two displacements that made it up.

TACTICS BOX 1.4 Adding vectors

To add \vec{B} to \vec{A} :

(1) Draw \vec{A}.

(2) Place the tail of \vec{B} at the tip of \vec{A}.
(3) Draw an arrow from the tail of \vec{A} to the tip of \vec{B}. This is vector $\vec{A}+\vec{B}$.

Exercise 21
Text: p.

QuickCheck 1.6

Given vectors \vec{P} and \vec{Q}, what is $\vec{P}+\vec{Q}$?

QuickCheck 1.6

Given vectors \vec{P} and \vec{Q}, what is $\vec{P}+\vec{Q}$?

Example 1.7 How far away is Anna?

Anna walks 90 m due east and then 50 m due north. What is her displacement from her starting point?

PREPARE Let's start with the sketch in FIGURE 1.25a. We set up a coordinate system with Anna's original position as the origin, and then we drew her two subsequent motions as the two displacement vectors \vec{d}_{1} and \vec{d}_{2}.
(a)

(b)

Example 1.7 How far away is Anna? (cont.)

(b)

solve We drew the two vector displacements with the tail of one vector starting at the head of the previous oneexactly what is needed to form a vector sum. The vector $\vec{d}_{\text {net }}$ in FIGURE 1.25a is the vector sum of the successive displacements and thus represents Anna's net displacement from the origin.

Example 1.7 How far away is Anna? (cont.)

(a)

(b)

Anna's distance from the origin is the length of this vector $\vec{d}_{\text {net }}$. FIGURE 1.25 b shows that this vector is the hypotenuse of a right triangle with sides 50 m (because Anna walked 50 m north) and 90 m (because she walked 90 m east). We can compute the magnitude of this vector, her net displacement, using the Pythagorean theorem (the square of the length of the hypotenuse of a triangle is equal to the sum of the squares of the lengths of the sides):

$$
\begin{aligned}
& d_{\mathrm{net}}^{2}=(50 \mathrm{~m})^{2}+(90 \mathrm{~m})^{2} \\
& d_{\mathrm{net}}=\sqrt{(50 \mathrm{~m})^{2}+(90 \mathrm{~m})^{2}}=103 \mathrm{~m} \approx 100 \mathrm{~m}
\end{aligned}
$$

Example 1.7 How far away is Anna? (cont.)

We have rounded off to the appropriate number of significant figures, giving us 100 m for the magnitude of the displacement vector. How about the direction? Figure 1.25 b identifies the angle that gives the angle north of east of Anna's displacement. In the right triangle, 50 m is the opposite side and 90 m is the adjacent side, so the angle is given by

$$
\theta=\tan ^{-1}\left(\frac{50 \mathrm{~m}}{90 \mathrm{~m}}\right)=\tan ^{-1}\left(\frac{5}{9}\right)=29^{\circ}
$$

Putting it all together, we get a net displacement of

$$
\vec{d}_{\mathrm{net}}=\left(100 \mathrm{~m}, 29^{\circ} \text { north of east }\right)
$$

Example 1.7 How far away is Anna? (cont.)

ASSESS We can use our drawing to assess our result. If the two sides of the triangle are 50 m and 90 m , a length of 100 m for the hypotenuse seems about right. The angle is certainly less than 45°, but not too much less, so 29° seems reasonable.

Velocity Vectors

- We represent the velocity of an object by a velocity vector that points in the direction of the object's motion, and whose magnitude is the object's speed.

The motion diagram for a car starting from rest

Example 1.8 Drawing a ball's motion diagram

Jake hits a ball at a 60° angle from the horizontal. It is caught by Jim. Draw a motion diagram of the ball that shows velocity vectors rather than displacement vectors.

The motion diagram of a ball traveling from Jake to Jim

Section 1.6 Where Do We Go from Here?

Summary and Organization of Chapters

- This chapter has been an introduction to some of the fundamental ideas about motion and some of the basic techniques that you will use.
- Each new chapter depends on those that preceded it.
- Each chapter begins with a chapter preview that will let you know which topics are especially important to review.
- The last element in each chapter will be an integrated example that brings together the principles and techniques you have just learned with those you learned previously.

Integrated Example 1.9 A goose gets its bearings

FIGURE 1.28 shows the path of a Canada goose that flew in a straight line for some time before making a corrective right-angle turn. One hour after beginning, the goose made a rest stop on a lake due east of its original position.

Integrated Example 1.9 A goose gets its bearings (cont.)

a. How much extra distance did the goose travel due to its initial error in flight direction? That is, how much farther did it fly than if it had simply flown directly to its final position on the lake?
b. What was the flight speed of the goose?
c. A typical flight speed for a migrating goose is $80 \mathrm{~km} / \mathrm{h}$. Given this, does your result seem reasonable

Integrated Example 1.9 A goose gets its bearings (cont.)

Drawing and labeling the displacement between the starting and ending points in Figure 1.29 show that it is the hypotenuse of a right triangle, so we can use our rules for triangles as we look for a solution.

Integrated Example 1.9 A goose gets its bearings (cont.)

SOLVE

a. The minimum distance the goose could have flown, if it flew straight to the lake, is the hypotenuse of a triangle with sides 21 mi and 28 mi . This straight-line distance is

$$
d=\sqrt{(21 \mathrm{mi})^{2}+(28 \mathrm{mi})^{2}}=35 \mathrm{mi}
$$

The actual distance the goose flew is the sum of the distances traveled for the two legs of the journey:

$$
\text { distance traveled }=21 \mathrm{mi}+28 \mathrm{mi}=49 \mathrm{mi}
$$

The extra distance flown is the difference between the actual distance flown and the straight-line distance-namely, 14 miles.

Integrated Example 1.9 A goose gets its bearings (cont.)

SOLVE

b. To compute the flight speed, we need to consider the distance that the bird actually flew. The flight speed is the total distance flown divided by the total time of the flight:

$$
v=\frac{49 \mathrm{mi}}{1.0 \mathrm{~h}}=49 \mathrm{mi} / \mathrm{h}
$$

c. To compare our calculated speed with a typical flight speed, we must convert our solution to km / h, rounding off to the correct number of significant digits:

$$
49 \frac{\mathrm{mi}}{\mathrm{~h}} \times \frac{1.61 \mathrm{~km}}{1.00 \mathrm{mi}}=79 \frac{\mathrm{~km}}{\mathrm{~h}} \quad \begin{aligned}
& \text { digits, but the original data had only } \\
& \text { two significant figures, so we report } \\
& \text { the final result to this accuracy }
\end{aligned}
$$

Summary: Important Concepts

Motion Diagrams

The particle model represents a moving object as if all its mass were concentrated at a single point. Using this model, we can represent motion with a motion diagram, where dots indicate the object's positions at successive times. In a motion diagram, the time interval between successive dots is always the same.

Each dot represents the position of the object. Each position is labeled with the time at which the dot was there.

Text: p. 22

Summary: Important Concepts

Scalars and Vectors

Text: p. 22
Scalar quantities have only a magnitude and can be represented by a single number. Temperature, time, and mass are scalars.

A vector is a quantity described by both a magnitude and a direction. Velocity and displacement are vectors.
Velocity vectors can be drawn on a motion diagram by connecting successive points with a vector.

Summary: Important Concepts

Describing Motion

Position locates an object with respect to a chosen coordinate system. It is described by a coordinate.

A change in position is called a displacement. For motion along a line, a displacement is a signed quantity. The displacement from x_{i} to x_{f} is $\Delta x=x_{\mathrm{f}}-x_{\mathrm{i}}$.

Time is measured from a particular instant to which we assign $t=0$. A time interval is the elapsed time between two specific instants t_{i} and t_{f}. It is given by $\Delta t=t_{\mathrm{f}}-t_{\mathrm{i}}$.
Velocity is the ratio of the displacement of an object to the time interval during which this displacement occurs:

$$
v=\frac{\Delta x}{\Delta t}
$$

Summary: Important Concepts

Units

Every measurement of a quantity must include a unit.
The standard system of units used in science is the SI system.
Common SI units include:

- Length: meters (m)
- Time: seconds (s)
- Mass: kilograms (kg)

Text: p. 22

Summary: Applications

Working with Numbers

In scientific notation, a number is expressed as a decimal number between 1 and 10 multiplied by a power of ten. In scientific notation, the diameter of the earth is $1.27 \times 10^{7} \mathrm{~m}$.

A prefix can be used before a unit to indicate a multiple of 10 or $1 / 10$. Thus we can write the diameter of the earth as $12,700 \mathrm{~km}$, where the k in km denotes 1000 .
We can perform a unit conversion to convert the diameter of the earth to a different unit, such as miles. We do so by multiplying by a conversion factor equal to 1 , such as $1=1 \mathrm{mi} / 1.61 \mathrm{~km}$.

Text: p. 22

Summary: Applications

Significant figures are reliably known digits. The number of significant figures for:

- Multiplication, division, and powers is set by the value with the fewest significant figures.
- Addition and subtraction is set by the value with the smallest number of decimal places.
An order-of-magnitude estimate is an estimate that has an accuracy of about one significant figure. Such estimates are usually made using rough numbers from everyday experience.

Text: p. 22

Summary

IMPORTANT CONCEPTS

Motion Diagrams

The particle model represents a moving object as if all its mass were concentrated at a single point. Using this model, we can represent motion with a motion diagram, where dots indicate the object's positions at successive times. In a motion diagram, the time interval between successive dots is always the same.

Scalars and Vectors

Scalar quantities have only a magnitude and can be represented by a single number.
Temperature, time, and mass are scalars.

A vector is a quantity

 described by both a magnitude and a direction. Velocity and displacement are vectors.Velocity vectors can be drawn on a motion diagram by connecting successive points with a vector.

Describing Motion

Position locates an object with respect to a chosen coordinate system. It is described by a coordinate.

A change in position is called a displacement. For motion along a line, a displacement is a signed quantity. The displacement from x_{i} to x_{f} is $\Delta x=x_{\mathrm{f}}-x_{\mathrm{i}}$.
Time is measured from a particular instant to which we assign $t=0$. A time interval is the elapsed time between two specific instants t_{i} and t_{f}. It is given by $\Delta t=t_{\mathrm{f}}-t_{\mathrm{i}}$.
Velocity is the ratio of the displacement of an object to the time interval during which this displacement occurs:

$$
v=\frac{\Delta x}{\Delta t}
$$

Units

Every measurement of a quantity must include a unit.
The standard system of units used in science is the SI system. Common SI units include:

- Length: meters (m)
- Time: seconds (s)
- Mass: kilograms (kg)

Summary

APPLICATIONS

Working with Numbers

In scientific notation, a number is expressed as a decimal number between 1 and 10 multiplied by a power of ten. In scientific notation, the diameter of the earth is $1.27 \times 10^{7} \mathrm{~m}$.

A prefix can be used before a unit to indicate a multiple of 10 or $1 / 10$. Thus we can write the diameter of the earth as $12,700 \mathrm{~km}$, where the k in km denotes 1000 .

We can perform a unit conversion to convert the diameter of the earth to a different unit, such as miles. We do so by multiplying by a conversion factor equal to 1 , such as $1=1 \mathrm{mi} / 1.61 \mathrm{~km}$.

Significant figures are reliably known digits. The number of significant figures for:

- Multiplication, division, and powers is set by the value with the fewest significant figures.
- Addition and subtraction is set by the value with the smallest number of decimal places.
An order-of-magnitude estimate is an estimate that has an accuracy of about one significant figure. Such estimates are usually made using rough numbers from everyday experience.

Text: p. 22

